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Georg Cantor
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Life before Cantor
How many elements in {1,2,4}? 3

How many elements in {1,2,4,10,13,18}? 6

How many primes? Infinite!

How many elements in N? Infinite!

How many elements in N\{0}? Infinite!

How many elements in Z? Infinite!

How many elements in R? Infinite!

What is this infinity though?

The symbol you write after taking a limit....

Don’t think about it....

Even Gauss: ”I protest against the use of infinite magnitude as
something completed, which is never permissible in mathematics.
Infinity is merely a way of speaking, the true meaning being a limit
which certain ratios approach indefinitely close, while others are
permitted to increase without restriction. ”



Cantor’s questions



Cantor’s questions

Is N\{0} smaller than N?



Cantor’s questions

Is N\{0} smaller than N?

Is N smaller than Z?



Cantor’s questions

Is N\{0} smaller than N?

Is N smaller than Z? What about Z2?



Cantor’s questions

Is N\{0} smaller than N?

Is N smaller than Z? What about Z2?

Is N smaller than R?



Hilbert’s hotel



Hilbert’s hotel

A hotel with infinite rooms.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G1 G2 G3 G4 · · ·



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 G4 · · ·

G0 shows up. What do we do?



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 G4 · · ·

G0 shows up. What do we do?

Move G1 to room number 2.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G3 G4 · · ·

G2



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G3 G4 · · ·

G2

Move G2 to room number 3.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G4 · · ·

G3



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G4 · · ·

G3

Move G3 to room number 4.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 · · ·

And so on.



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 · · ·

And so on.

Now G0 can go to room number 1!!



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 · · ·

And so on.

Now G0 can go to room number 1!!



Hilbert’s hotel

A hotel with infinite rooms. Rooms are numbered from 1 to infinity.
Every room is occupied. Room i has guest Gi .

G0 G1 G2 G3 · · ·

And so on.

Now G0 can go to room number 1!!

G0 G1 G2 G3 · · ·
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Moral of the story

Number of rooms: N\{0}
Number of guests: N

N\{0} is not smaller than N.

N\{0} is not bigger than N. Why? Because it’s a subset.

Therefore, N\{0} must have the same number of elements as N.

Is this a proof? How would we show this formally???
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Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.
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Onto. Not a function.
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Countable.

� Enumerable means countable.

� Subsets of countable sets are countable.
For example the set {14,54,5332,1012 +4} is countable. (It has
4 elements) Even numbers are countable. Prime numbers are
countable. Multiples of 3 are countable.

� All countably infinite sets have the same cardinality as each
other.
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Back to Hilbert’s hotel

G0 G1 G2 G3 · · ·

Where’s the function?

We want a bijection from: N\{0} to N.

f (x) = x −1. Maps every number from N\{0} to a number in N, and
every number in x ∈ N has exactly one number y ∈ N\{0} such that
f (y) = x .

What if we had a bijection from N to N\{0}?

Same thing! Bijection means that the sets have the same size. Invert
it and you’ll get a bijection from N\{0} to N.
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Countably infinite (same cardinality as naturals)

� E even numbers.
Where are the odds? Half as big?
Enumerate: 0, 2, 4, ...
0 maps to 0, 2 maps to 1 , 4 maps to 2, ...
Enumeration naturally corresponds to function.
No two evens map to the same natural.
For every natural, there is a corresponding even.
Bijection: f (e) = e/2.

� Z - all integers.
Twice as big?
Enumerate: 0,1,2,3, ...
When will we get to −1???
New Enumeration: 0, −1,1, −2,2...
Bijection: f (z) = 2|z|−sign(z).
Where sign(z) = 1 if z > 0 and sign(z) = 0 otherwise.
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Uncountable.

Any subset of a countable set is countable.

If reals are countable then so is [0,1].
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The set of all subsets of N.

Example subsets of N: {0}, {0, . . . ,7},
evens, odds, primes, multiples of 10

� Assume is countable.

� There is a listing, L, that contains all subsets of N.

� Define a diagonal set, D:
If i th set in L does not contain i , i ∈ D.

otherwise i �∈ D.

� D is different from i th set in L for every i .
=⇒ D is not in the listing.

� D is a subset of N.

� L does not contain all subsets of N.
Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
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Countable or uncountable??

� Binary strings?

� Trees?

� Weighted trees?

� Inputs to the stable marriage algorithm?

� Mathematical proofs?

� Programs in Java?

� All possible endings to Game of Thrones?

� All subsets of Reals?

� Functions from N to N?

You already know some of these..... Think about induction!
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What happened with Cantor?

Cantor’s work between 1874 and 1884 is the origin of set theory.
No one had realized that set theory had any nontrivial content.
Before Cantor: Finite , Infinite
After Cantor:

� Countable
� Finite and countable. For example {1,2,3}
� Infinite and countable. For example N, Z, ...

� Uncountable. For example [0,1], R...

� Bigger than uncountable! (Math 135, Math 136, Math 227A ... )

Everyone was upset! Many puzzled... Many openly hostile to
Cantor... Cantor was clinically depressed. In and out of hospitals until
the end of his life. Died in poverty...



Cantor’s legacy

Gottlob Frege:



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition:



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory.



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1.



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1. 680 pages (Amazon).



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1. 680 pages (Amazon).
About to publish vol. 2.



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1. 680 pages (Amazon).
About to publish vol. 2. And then......



Cantor’s legacy

Gottlob Frege: Let’s look at the foundations!
Clear ambition: Become the new Euclid.
Make up a bunch of axioms for number theory. ( In the case of
geometry ”A straight line segment can be drawn joining any two
points” etc)
Everything that is true in number theory can be inferred from the
axioms.
Writes Basic Laws of Arithmetic vol. 1. 680 pages (Amazon).
About to publish vol. 2. And then......
Disaster!!
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A bug
Bertrand Russell finds a bug!

Frege’s reaction: ”Hardly anything more unfortunate can befall a
scientific writer than to have one of the foundations of his edifice
shaken after the work is finished. This was the position I was placed
in by a letter of Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.”



A poem

Zisimos Lorentzatos.
”Beware of systems grandiose, of mathematically strict causalities as
you’re trying, stone by stone, to found the goldenwoven tower of the
logical, castle and fort immune to contradiction. Designed in two
volumes, the foundational laws of arithmetic, or Grundgesetze of der
arithmetic in 1893, the first, 1903 the second. A life’s work. Hammer
on chisel blows for years and years. So far, so good. But as Frege
Gottlob was correcting, content, the printer’s proofs already of the
second volume, one cursed logic paradox, one not admitting
refutation, question by Russell Bertrand, forced, without delay, the
great thinker of Mecklemburg to add a last paragraph to his system,
show me a great thinker who would resist the truth, accepting the
reversible disaster. His foundations in ruin, his logic flawed, his work
wasted, and his two volumes imagine the colossal set back, odd load
and ballast for the refuge cart.”
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� ”This statement is false”
Is the statement above true?

� A barber says ”I shave all and only those men who do not shave
themselves.”
Who shaves the barber??

� Self reference.........
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Naive Set Theory: Any definable collection is a set.

Let’s think about the set of all sets that don’t contain themselves. Call
it A.

Does A contain itself?

Oops!

What type of object is a set that contain sets?
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Changing Axioms?

They did keep trying to put all of mathematics on a firm basis...
Trying to find a set of axioms such that is

� Consistent: You can’t prove false statements

� Complete: Everything true can be proven.

Other people in this story: Russell , Whitehead , Wittgenstein , Hilbert
(We must know. We will know.) ...
Until 1931.
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Changing Axioms?

Kurt Gödel:
Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis (see official notes if interested)
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� Gödel ..starved himself out of fear of being poisoned..

� Russell .. was fine.....but for two schizophrenic children..

� Wittgenstein ... multiple tragedies in his family.

� Dangerous work?

� See Logicomix by Doxiadis, Papadimitriou (my advisor!),
Papadatos, Di Donna.



Next Topic: Undecidability.

� Undecidability. A happy ending?



Turing
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A program that checks that the compiler works!

How about.. Check that the compiler terminates on a certain input.
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P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
Program is a text string.
Text string can be an input to a program.
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Implementing HALT.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Run P on I and check!

How long do you wait?

Something about infinity here, maybe?

Theorem: There is no program HALT.
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In Turing’s time.

No computers.

Concept of program as data wasn’t really there.
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Does a program ever print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Is there program that makes other programs faster?

Is there program that decides if two other programs are equivalent?

Does this computer program have any security vulnerabilities?
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Gordon Brown. 2009. “Thousands of people have come together to
demand justice for Alan Turing and recognition of the appalling way
he was treated. While Turing was dealt with under the law of the time
and we can’t put the clock back, his treatment was of course utterly
unfair and I am pleased to have the chance to say how deeply sorry I
and we all are for what happened to him. Alan and the many
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So on behalf of the British government, and all those who live freely
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2013. Granted Royal pardon.
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Computer Programs are an interesting thing.
Like Math.

Deep connection between mathematical proofs and computer
programs.
Computer Programs cannot completely “understand” computer
programs.

Example: no computer program can tell if any other computer
program HALTS.

Programming is a super power.




