CS70: Discrete Math and Probability

Fan Ye June 29, 2016

Stable Marriage Problem

• Small town with *n* boys and *n* girls.

- Small town with *n* boys and *n* girls.
- Each girl has a ranked preference list of boys.

- Small town with *n* boys and *n* girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

- Small town with *n* boys and *n* girls.
- Each girl has a ranked preference list of boys.
- · Each boy has a ranked preference list of girls.

How should they be matched?

• Maximize total satisfaction.

- Maximize total satisfaction.
- Maximize number of first choices.

- Maximize total satisfaction.
- Maximize number of first choices.
- · Maximize worse off.

- · Maximize total satisfaction.
- Maximize number of first choices.
- · Maximize worse off.
- Minimize difference between preference ranks.

Consider the couples..

- · Jennifer and Brad
- · Angelina and Billy-Bob

Consider the couples..

- · Jennifer and Brad
- · Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.

Consider the couples ..

- · Jennifer and Brad
- · Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.

Angelina prefers Brad to BillyBob.

Consider the couples ..

- · Jennifer and Brad
- · Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.

Angelina prefers Brad to BillyBob.

Uh..oh.

Definition: A **pairing** is disjoint set of *n* boy-girl pairs.

Definition: A **pairing** is disjoint set of *n* boy-girl pairs.

Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

Definition: A **pairing** is disjoint set of *n* boy-girl pairs.

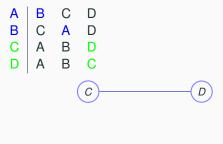
Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

Definition: A rogue couple b, g^* for a pairing *S*: *b* and g^* prefer each other to their partners in *S*

Definition: A **pairing** is disjoint set of *n* boy-girl pairs.

Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

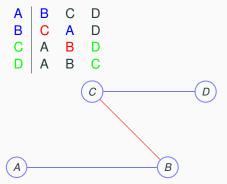
Definition: A rogue couple b, g^* for a pairing *S*: *b* and g^* prefer each other to their partners in *S*

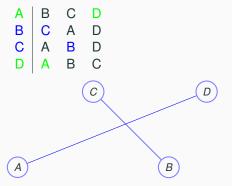

Example: Brad and Angelina are a rogue couple in S.

Is there a stable pairing?

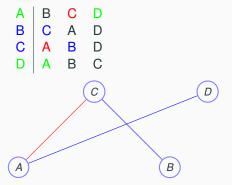
How does one find it?

Is there a stable pairing?


How does one find it?


Is there a stable pairing?

How does one find it?


Is there a stable pairing?

How does one find it?

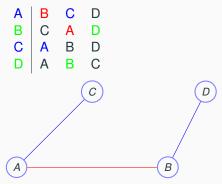
Is there a stable pairing?

How does one find it?

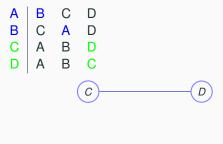


Is there a stable pairing?

How does one find it?

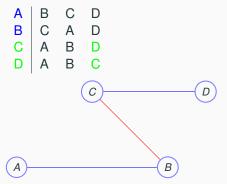

Consider a single gender version: stable roommates.

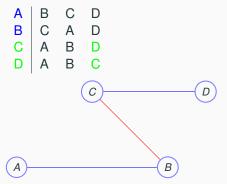
D


Is there a stable pairing?

How does one find it?

Is there a stable pairing?


How does one find it?


Is there a stable pairing?

How does one find it?

Is there a stable pairing?

How does one find it?

1. Each boy proposes to his favorite girl on his list.

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

...produce a pairing?

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

...produce a pairing?

....a stable pairing?

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do "better"?

- 1. Each boy proposes to his favorite girl on his list.
- 2. Each girl rejects all but her favorite proposer (whom she puts on a string.)
- 3. Rejected boy crosses rejecting girl off his list.

Stop when each girl gets exactly one proposal.

Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do "better"?

	Bo				Gi		
A	1	2	3	1	С	А	В
В	1	2	3	2	А	В	С
A B C	2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1					
2					
3					

	Bo				Gi		
A B C	1	2	3	1	С	А	В
В	1	2	3	2	А	В	С
С	2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A, B				
2	С				
3					

	Bo				Gi		
A	1	2	3	1	С	Α	В
A B	X	2	3	2	А	В	С
С	2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X				
2	С				
3					

	Bo				Gi		
A	1	2	3	1	С	Α	В
A B	X	2	3	2	А	В	С
С	2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α			
2	С	B, C			
3					

	Bo			Girls				
Α	1	2	3	1	С	Α	В	
В	X	2	3	2	А	В	С	
С	1 X1 X2	1	3	3	C A A	С	В	

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α			
2	С	в,🗶			
3					

	Bo	ys		Girls				
Α	1	2	3	1	С	Α	В	
В	X	2	3	2	А	В	С	
С	1 X1 X2	1	3	3	C A A	С	В	

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	A	A, C		
2	С	в,Х	В		
3					

	Bo	ys			Girls		
А	X	2	3	1	С	А	В
В	X	2	3	2	А	В	С
С	Xi Xi X2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α	🔏, С		
2	С	в,🗶	В		
3					

	Bo	ys			Girls		
А	X i	2	3	1	С	А	В
В	X	2	3	2	А	В	С
С	Xi Xi X2	1	3	3	C A A	С	В

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α	🔏, С	С	
2	С	в,🗶	В	A,B	
3					

	Boys					Girls Girls 1 C A B 2 A B C 3 A C B			
	А	X i	2	3		1	С	А	В
	В	X	X	3		2	Α	В	С
	С	X	2 X2 1	3		3	А	С	В
ľ					1				

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α	🔏, С	С	
2	С	в,🗶	В	AXB	
3					

	Boys A X 2 3 B X X 3 C X 1 3				Girls 1 C A B 2 A B C 3 A C B			
	А	X	2	3	1	С	А	В
	В	X	X	3	2	Α	В	С
	С	X	1	3	3	А	С	В
1								

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α	🔏, С	С	С
2	С	в,🗶	В	AXB	А
3					В

	Boys A X 2 3 B X X 3 C X 1 3				Girls 1 C A B 2 A B C 3 A C B			
	А	X	2	3	1	С	А	В
	В	X	X	3	2	Α	В	С
	С	X	1	3	3	А	С	В
1								

	Day 1	Day 2	Day 3	Day 4	Day 5
1	A,X	Α	🔏, С	С	С
2	С	в,🗶	В	AXB	А
3					В

Termination.

Total size of lists?

Total size of lists? *n* boys, *n* length list.

Total size of lists? *n* boys, *n* length list. n^2

Total size of lists? *n* boys, *n* length list. n^2

Terminates in at most $n^2 + 1$ steps!

If on day *t* a girl, *g*, has a boy *b* on a string,

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > t

If on day t a girl, g, has a boy b on a string, any boy, b', on g's string for any day t' > tis at least as good as b.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b',

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is,

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm.

 $P(k) \implies P(k+1).$

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy **on string** on day t + k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm.

 $P(k) \implies P(k+1)$. And by principle of induction.

If on day *t* a girl, *g*, has a boy *b* on a string, any boy, *b'*, on *g*'s string for any day t' > tis at least as good as *b*.

Proof:

P(k)- - "boy on g's string is at least as good as b on day t + k"

P(0)- true. Girl has b on string.

Assume P(k). Let b' be boy on string on day t+k.

On day t + k + 1, boy b' comes back. Girl can choose b', or do better with another boy, b''

That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm.

 $P(k) \implies P(k+1)$. And by principle of induction.

Proof:

Proof:

If not, a boy b must have been rejected n times.

Proof:

If not, a boy b must have been rejected n times.

Every girl has been proposed to by b,

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys.

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

Proof:

If not, a boy b must have been rejected n times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

Proof:

If not, a boy b must have been rejected n times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

 \implies *b* must be on some girl's string!

Proof:

If not, a boy *b* must have been rejected *n* times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

 \implies *b* must be on some girl's string!

Contradiction.

Proof:

If not, a boy b must have been rejected n times.

Every girl has been proposed to by *b*, and Improvement lemma

 \implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

 \implies *b* must be on some girl's string!

Contradiction.

Proof:

```
Assume there is a rogue couple; (b, g^*)
```

Proof:

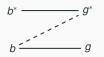
Assume there is a rogue couple; (b, g^*)

b ——____ g

Proof:

Assume there is a rogue couple; (b, g^*)

Proof:


Assume there is a rogue couple; (b, g^*)

b likes g^* more than *g*.

Proof:

Assume there is a rogue couple; (b, g^*)

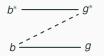


b likes g^* more than g.

 g^* likes b more than b^* .

Proof:

Assume there is a rogue couple; (b, g^*)


b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected *b* (since he moved on)

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected *b* (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected *b* (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Proof:

Assume there is a rogue couple; (b, g^*)

b likes g^* more than g.

 g^* likes b more than b^* .

Boy *b* proposes to g^* before proposing to *g*.

So g^* rejected *b* (since he moved on)

By improvement lemma, g^* likes b^* better than b.

Contradiction!

Is the TMA better for boys?

Is the TMA better for boys? for girls?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A pairing is x-pessimal if x's partner

is its worst partner in any stable pairing.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A pairing is x-pessimal if x's partner

is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any stable pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is *x*-optimal for all boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is *x*-optimal for all boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is x-optimal for all boys x.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is x-optimal for all boys x.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible:

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing!

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is *x*-optimal for all boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing! Yes?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing! Yes? No?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any stable pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'s partner is its worst partner in any **stable** pairing.

Definition: A **pairing is boy optimal** if it is *x*-optimal for **all** boys *x*.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing! Yes? No? For boys?

For boys? For girls?

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof: Assume not:

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let t be first day a boy b gets rejected

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing *S*.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day t

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl g who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 \implies b^* prefers g to his partner g^* in S.

Rogue couple for S.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Notes:

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Notes: S - stable.

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

```
Rogue couple for S.
So S is not a stable pairing. Contradiction.
```

```
Notes: S - stable. (b^*, g^*) \in S.
```

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

```
Rogue couple for S.
So S is not a stable pairing. Contradiction.
```

```
Notes: S - stable. (b^*, g^*) \in S. But (b^*, g)
```

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:

Assume not: there are boys who do not get their optimal girl.

Let *t* be first day a boy *b* gets rejected by his optimal girl *g* who he is paired with in stable pairing *S*.

 b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

 $\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for *S*. So *S* is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...Induction.

Theorem: TMA produces girl-pessimal pairing.

Theorem: TMA produces girl-pessimal pairing.

T – pairing produced by TMA.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.
- In T, (g, b) is pair.
- In S, (g, b^*) is pair.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.
- In T, (g, b) is pair.
- In S, (g, b^*) is pair.
- g likes b^* less than she likes b.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.
- In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.
- In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

S is not stable.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Notes:

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.
- In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction. Structural statement: Boy optimality

Theorem: TMA produces girl-pessimal pairing.

- T pairing produced by TMA.
- S worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b^* less than she likes b.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

(g,b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Boy optimality \implies Girl pessimality.

SMA - stable marriage algorithm. One side proposes.

SMA - stable marriage algorithm. One side proposes. TMA - boys propose.

SMA - stable marriage algorithm. One side proposes. TMA - boys propose. Girls could propose.

SMA - stable marriage algorithm. One side proposes. TMA - boys propose. Girls could propose. \implies optimal for girls.

Hospital optimal....

Hospital optimal....

..until 1990's...

Hospital optimal....

..until 1990's...Resident optimal.

Summary

► Link

► Link

Tomorrow Alex starts on Infinity and Countability

► Link

Tomorrow Alex starts on Infinity and Countability

Thank you all!