	Stable Marriage Problem	Count the ways
CS70: Discrete Math and Probability Fan Ye June 29, 2016	 Small town with <i>n</i> boys and <i>n</i> girls. Each girl has a ranked preference list of boys. Each boy has a ranked preference list of girls. How should they be matched? 	 Maximize total satisfaction. Maximize number of first choices. Maximize worse off. Minimize difference between preference ranks.
	1	2
The best laid plans	So	A stable pairing??
Consider the couples - Jennifer and Brad - Angelina and Billy-Bob Brad prefers Angelina to Jennifer. Angelina prefers Brad to BillyBob. Uhoh.	Produce a pairing where there is no running off! Definition: A pairing is disjoint set of <i>n</i> boy-girl pairs. Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$. Definition: A rogue couple <i>b</i> , <i>g</i> [*] for a pairing <i>S</i> : <i>b</i> and <i>g</i> [*] prefer each other to their partners in <i>S</i> Example: Brad and Angelina are a rogue couple in <i>S</i> .	<text><text><text><text></text></text></text></text>

he Traditional Marriage Algorithm.	Example.	Termination.
Each Day: 1. Each boy proposes to his favorite girl on his list. 2. Each girl rejects all but her favorite proposer (whom she puts on a string.) 3. Rejected boy crosses rejecting girl off his list. Stop when each girl gets exactly one proposal. Does this terminate? produce a pairing? Do boys or girls do "better"?	BoysGirlsA $\begin{vmatrix} X & 2 & 3 \\ X & 2 & 3 \\ C & X^2 & 1 & 3 \end{vmatrix}$ 1CABB $X & X^2 & 3 \\ X^2 & 1 & 3 \end{vmatrix}$ 2ABCC $X^2 & 1 & 3 \end{vmatrix}$ 3ACBIIDay 1Day 2Day 3Day 4Day 51A X^6 AAX_6 CCC2CB,X BAAB3BA X BBB	Every non-terminated day a boy crossed an item off the list. Total size of lists? <i>n</i> boys, <i>n</i> length list. n^2 Terminates in at most $n^2 + 1$ steps!
It gets better every day for girls Improvement Lemma: It just gets better for girls. If on day t a girl, g , has a boy b on a string, any boy, b' , on g 's string for any day $t' > t$ is at least as good as b .	6 Pairing when done. Lemma: Every boy is matched at end. Proof: If not, a boy <i>b</i> must have been rejected <i>n</i> times.	Pairing is Stable. Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm. Proof: Assume there is a rogue couple; (b, g*)
Proof: P(k) "boy on g's string is at least as good as b on day $t + k$ " P(0)- true. Girl has b on string. Assume $P(k)$. Let b' be boy on string on day $t + k$. On day $t + k + 1$, boy b' comes back. Girl can choose b', or do better with another boy, b"	 Every girl has been proposed to by b, and Improvement lemma ⇒ each girl has a boy on a string. and each boy on at most one string. n girls and n boys. Same number of each. 	$b^* - g^*$ b likes g^* more than g . $b - g^*$ g^* likes b more than b^* . Boy b proposes to g^* before proposing to g .
That is, $b \le b'$ by induction hypothesis. And b'' is better than b' by algorithm. $P(k) \implies P(k+1)$. And by principle of induction.		So g* rejected b (since he moved on) By improvement lemma, g* likes b* better than b. Contradiction!

Good for boys? girls?

Is the TMA better for boys? for girls?

Definition: A **pairing is** *x***-optimal** if *x*'*s* partner is its best partner in any **stable** pairing.

Definition: A **pairing is** *x***-pessimal** if *x*'*s* partner is its worst partner in any **stable** pairing.

Definition: A pairing is boy optimal if it is x-optimal for all boys x.

..and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing. As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing? Is it possible: *b*-optimal pairing different from the *b*'-optimal pairing! Yes? No?

Quick Questions.

How does one make it better for girls?

SMA - stable marriage algorithm. One side proposes. TMA - boys propose. Girls could propose. ⇒ optimal for girls.

TMA is optimal!

For boys? For girls?	
Theorem: TMA produces a boy-optimal pairing.	
Proof: Assume not: there are boys who do not get their optimal girl.	
Let <i>t</i> be first day a boy <i>b</i> gets rejected by his optimal girl <i>g</i> who he is paired with in stable pairing <i>S</i> .	
b^* - knocks b off of g 's string on day $t \implies g$ prefers b^* to b	
By choice of t , b^* prefers g to optimal girl.	
$\implies b^*$ prefers g to his partner g^* in S.	
Rogue couple for <i>S</i> . So <i>S</i> is not a stable pairing. Contradiction.	
Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple! Used Well-Ordering principleInduction.	

Residency Matching..

12

15

The method was used to match residents to hospitals.

Hospital optimal....

.. until 1990's...Resident optimal.

How about for girls?

Theorem: TMA produces girl-pessimal pairing.

T – pairing produced by TMA.

S – worse stable pairing for girl g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g likes b* less than she likes b.

T is boy optimal, so b likes g more than his partner in S.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.

Notes: Not really induction. Structural statement: Boy optimality \implies Girl pessimality.

14

17

Summary

► Link

Tomorrow Alex starts on Infinity and Countability

Thank you all!

16

13