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Complete Graph.

Kn complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to n−1 edges.
Sum of degrees is n(n−1).
=⇒ Number of edges is n(n−1)/2.

Remember sum of degree is 2|E |.
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Terminology:
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a partition of the vertices of a graph into two disjoint subsets.
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Restatement: for any cut in the hypercube, the number of cut edges is at least the size
of the small side.
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Also, case 3 where |S1|≥ |V |/2 is symmetric.
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Pick one arbitrary vertex v , split all vertices into two groups
A = {u ∈ V |∃ odd length path from v to u}
B = {u ∈ V |∃ even length path from v to u}

We have a bipartite graph if A and B are disjoint.
What if a vertex in both sets? Odd length cycle! Contradiction
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