
CS70: Discrete Math and Probability

Fan Ye

June 28, 2016

Planar non-planar

A finite graph is planar iff it does not contain a subgraph that is (a subdivision of) K5 or
K3,3

1

Complete Graph.

Kn complete graph on n vertices.
All edges are present.
Everyone is my neighbor.
Each vertex is adjacent to every other vertex.

How many edges?
Each vertex is incident to n−1 edges.
Sum of degrees is n(n−1).
=⇒ Number of edges is n(n−1)/2.

Remember sum of degree is 2|E |.

2

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
A connected graph where any edge addition creates a cycle.

Some trees.

no cycle and connected? Yes.
|V |−1 edges and connected? Yes.
removing any edge disconnects it. Harder to check. but yes.
Adding any edge creates cycle. Harder to check. but yes.

3

Equivalence of Definitions.

Theorem:
“G connected and has |V |−1 edges” ≡

“G is connected and has no cycles.”

Lemma: If v is a degree 1 in connected graph G, G−v is connected.
Proof:

For x �= v ,y �= v ∈ V ,
there is path between x and y in G since connected.
and does not use v (degree 1)
=⇒ G−v is connected.

v

x

y

4

Proof of only if.

Thm:
“G connected and has |V |−1 edges” ≡

“G is connected and has no cycles.”

v

Proof of =⇒ : By induction on |V |.
Base Case: |V |= 1. 0 = |V |−1 edges and has no cycles.

Induction Step:
Claim: There is a degree 1 node.

Proof: First, connected =⇒ every vertex degree ≥ 1.
Sum of degrees is 2|V |−2
Average degree 2−2/|V |
Not everyone is bigger than average!

By degree 1 removal lemma, G−v is connected.
G−v has |V |−1 vertices and |V |−2 edges so by induction

=⇒ no cycle in G−v .
And no cycle in G since degree 1 cannot participate in cycle.

5

Proof of if

Thm:
“G is connected and has no cycles” =⇒ “G connected and has |V |−1 edges”

Proof:
Walk from a vertex using untraversed edges.
Until get stuck.

Claim: Must stuck at a degree 1 vertex.
Proof of Claim:

Can’t visit any vertex more than once since no cycle.
Entered. Didn’t leave. Only one incident edge.

Removing node doesn’t create cycle.
New graph is connected.
Removing degree 1 node doesn’t disconnect from Degree 1 lemma.
By induction G−v has |V |−2 edges.

G has one more or |V |−1 edges.

6

Tree’s fall apart.

Thm: Can always find a node such that the largest connected component we get by
removing it has size at most |V |/2

Idea of proof.

Point edge toward bigger side.
Remove center node.

7

Hypercubes.

Complete graphs, really connected! But lots of edges.
|V |(|V |−1)/2

Trees, But few edges. (|V |−1)
just falls apart!

Hypercubes. Really connected.
Also represents bit-strings nicely.

G = (V ,E)

|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

2n vertices. number of n-bit strings!
n2n−1 edges.

2n vertices each of degree n
total degree is n2n and half as many edges!

8

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a n−1-dimensional
hypercube with nodes labelled 0x (1x) with the additional edges (0x ,1x).

9

Hypercube: Can’t cut me!

Thm: Any subset S of the hypercube where |S|≤ |V |/2 has ≥ |S| edges connecting it
to V −S; |E ∩S× (V −S)|≥ |S|

Terminology:
(S,V −S) is cut.

a partition of the vertices of a graph into two disjoint subsets.
(E ∩S× (V −S)) - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size
of the small side.

10

Proof of Large Cuts.

Thm: For any cut (S,V −S) in the hypercube, the number of cut edges is at least the
size of the small side.

Proof:
Base Case: n = 1 V= {0,1}.

11

Induction Step Idea

Thm: For any cut (S,V −S) in the hypercube, the number of cut edges is at least the size of the
small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively. Case 2: Count inside and across.

12

Induction Step

Thm: For any cut (S,V −S) in the hypercube, the number of cut edges is at least the
size of the small side, |S|.

Proof: Induction Step.
Recursive definition:

H0 = (V0,E0),H1 = (V1,E1), edges Ex that connect them.
H = (V0 ∪V1,E0 ∪E1 ∪Ex)

S = S0 ∪S1 where S0 in first, and S1 in other.

Case 1: |S0|≤ |V0|/2, |S1|≤ |V1|/2
Both S0 and S1 are small sides. So by induction.

Edges cut in H0 ≥ |S0|.
Edges cut in H1 ≥ |S1|.

Total cut edges ≥ |S0|+ |S1|= |S|.

13

Induction Step. Case 2.

Thm: For any cut (S,V −S) in the hypercube, the number of cut edges is at least the
size of the small side, |S|.
Proof: Induction Step. Case 2. |S0|≥ |V0|/2.

Recall Case 1: |S0|, |S1|≤ |V |/2
|S1|≤ |V1|/2 since |S|≤ |V |/2.

=⇒ ≥ |S1| edges cut in E1.
|S0|≥ |V0|/2 =⇒ |V0 −S0|≤ |V0|/2

=⇒ ≥ |V0|− |S0| edges cut in E0.

Edges in Ex connect corresponding nodes.
=⇒ ≥ |S0|− |S1| edges cut in Ex .

Total edges cut:
≥ |S1|+ |V0|− |S0|+ |S0|− |S1|= |V0|
|V0|= |V |/2 ≥ |S|.

Also, case 3 where |S1|≥ |V |/2 is symmetric.

14

Bipartite graph

Bipartite graph: a bipartite graph is a graph whose vertices can be divided into two
disjoint sets U and V such that every edge connects a vertex in U to one in V .

U and V are sometimes called the parts of the graph.

Coloring? How many colors do we need? 2!

15

Bipartite?

Which of the following graphs are bipartite?

No Yes No Yes

A graph is a bipartite graph if and only if it does not contain any odd-length cycles.

16

Proof

Only if: trivial

Start at a node v in one part, say V , the cycle must be like leaving V , entering V , . . .
Also the cycle must end at v , so the cycle must end with ”entering V ”.All paired up,
even length.

No odd-length cycle =⇒ bipartite:

Different connected components does not influence each other, just look at one first

Pick one arbitrary vertex v , split all vertices into two groups
A = {u ∈ V |∃ odd length path from v to u}
B = {u ∈ V |∃ even length path from v to u}

We have a bipartite graph if A and B are disjoint.
What if a vertex in both sets? Odd length cycle! Contradiction

17

What have we done?!

Graphs!

Eulerian tour: DNA sequence reconstructing

Coloring: Cellular tower frequency assignment

Trees: Immense applications.........

Modeling reality:

Internet? Giant directed graph
Dark net? A separate connect component!
.

18

