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A

B

C

D

Can you draw a tour in the graph where you visit each edge once? Yes? No?

12
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Can you make a tour visiting each bridge exactly once?

Figure 1: “Konigsberg bridges” by Bogdan Giuşcă - License.
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Can you draw a tour in the graph where you visit each edge once? Yes? No?
We will see!
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Path: (v1,v2),(v2,v3), . . .(vk−1,vk ).
Paths, walks, cycles, tours ... are analagous to undirected now.

18



Thank you!

Congrats on surviving the first week!
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Thank you!

Congrats on surviving the first week!

Have a good weekend!

Don’t forget your homework, homework party tonight.
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