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Today

Last lecture!

Fun with number theory and polynomials.

Again, slides marked with a * are totally optional “fun stuff”.
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Modular Arithmetic

Covered in more detail in M115.

x is congruent to y modulo m, denoted “x≡ y (mod m)” if and only if
(x−y) is divisible by m (denoted m|(x−y)) if and only if x and y have
the same remainder w.r.t. m. if and only if x= y+km for some
integer k.

Congruence partitions the integers into equivalence classes
("congruence classes"), e.g. these for mod 7: {. . . ,−7,0,7,14, . . .},
{. . . ,−6,1,8,15, . . .}.
If a≡ c (mod m) and b≡ d (mod m), then a+b≡ c+d (mod m) and
a ·b≡ c ·d (mod m).

Division: multiplication by multiplicative inverse. How do we find MI?
EGCD!
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Euclidean Algorithm

Multiplicative inverse of a (mod m) exists if and only if gcd(a,m) = 1.

Find inverse (and check GCD) with extended Euclid.

Inputs: x≥ y≥ 0 with x> 0. Outputs: integers (d,a,b) where
d= gcd(x,y) = ax+by.

1. If y= 0, return (x,1,0): x= 1x+0y.
2. Otherwise, let (d,a,b) be the return value of the extended GCD

algorithm on (y,x−y⌊x/y⌋).
3. Return (d,b,a−b⌊x/y⌋).

How do we find multiplicative inverse? Solve ax+bm= 1.
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Exponentiation in Modular Arithmetic

Repeated squaring!
5143 ≡ 5132 ·518 ·512 ·511 ≡ (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Euler’s Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n),
where ϕ(n), the totient function, represents the number of numbers
in [1,n] that are relatively prime with n.

Immediate corollary: Fermat’s little theorem. Suppose p is prime.
Then ap ≡ a (mod p). Furthermore, if p ̸ |a, then ap−1 ≡ 1 (mod p).
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(Another) Combinatorial Proof of FLT

How many ways are there to assign a colors to p numbers, {1, ...,p}
such that not all colors are the same?

Answer 1: ap−a (all colorings - monochromatic ones).

Answer 2: Divide colorings into equivalence classes; two colorings
are equivalent if I can get from one to the other by performing a
shift. All colorings in class must be different. Why? If I can shift by
some number smaller than p to get back to my original result, that
means that either the coloring isn’t monochromatic, or that p isn’t a
prime! Size of each class is p since we can shift p ways. That means
ap−a must be a multiple of p!
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Example Problem: Dot Product over Finite Fields

Here’s a question that almost made it onto the final (removed on
Tuesday since the final was getting long)

Let A1, . . . ,An,B1, . . . ,Bn be numbers in {0, . . . ,p− 1} for some prime
number p. At least one of them is not zero. We pick w1, . . . ,wn, where
each wi is picked from the set {0, . . . ,p− 1} uniformly at random. Let
α = ∑i wiAi and β = ∑i wiBi . You may assume at least one of the Ais
and at least one of the Bis are nonzero.

1. (11 points) What is the probability that α = 0 (mod p)?
2. (11 points) Give a strictly positive (non zero) lower bound to the

probability that α ·β is not equal to zero. (Hint: union bound)
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Dot Product over Finite Fields, Solution

Part 1:

• Case 1: Two or more Ai’s are non-zero. Look at the coefficient i of
one of the non-zero ones. In order to make the sum non-zero,
wiAi must be equal to S= ∑j≠i wjAj. Therefore, we are asking for
the probability that wiAi = S, which is 1/p.

• Case 2: Exactly one Ai is non-zero. Make its coefficient zero.

Probability for part 1: 1/p.

Part 2:
Pr[αβ ̸= 0] = 1−Pr[αβ = 0]

Pr[αβ = 0] = Pr[α = 0∪β = 0]≤ Pr[α = 0]+Pr[β = 0] = 2
p
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Cryptography

Simple private-key scheme: encrypt the message by bitwise XOR-ing
with plaintext. Problems: huge key size, reliance on a shared secret,
one-time key.

RSA:

• Key generation: Recipient: compute p and q, let N= pq. Choose
some e relatively prime to (p− 1)(q− 1) (normally small, say, 3),
and then computes d= e−1 mod (p− 1)(q− 1). Public key: (N,e).
Private key: (N,d).

• Encrypt: Given plaintext x, sender computes ciphertext
c= E(x) =mod(xe,N).

• Decrypt: Recipient computes x= D(c) =mod(cd,N).

How did we find primes? Random sampling primes around x gives
around 1/ lnx of finding primes. Test with Fermat’s primality test.

Pick random a. Check if ap−1 ≡ 1 (mod p). No? then composite. Yes?
Prime or Carmichael w.p. at least 1/2. 9



Public Key Encryption, In General...

Security rests on difficulty of integer factorization. Are there other
hard

What about other hardness assumptions?

Discrete log! Make cryptosystems based on the (widely believed)
hardness of solving bk = g in some finite group. ElGamal,
Diffie-Hellman, elliptic curves.

Sometimes private key encryption isn’t safe for small, easily
recognizable plaintexts... what if you try to encrypt 0 as a ciphertext?
Or if you’re trying to send something like a social security number
(only 9 digits - easily brute-forced). Padding and hybrid encryption.

Like this stuff? Want to learn more? CS276.
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Chinese Remainder Theorem

For two congruences: Suppose gcd(m,n) = 1. Then the two equations
x≡ a (mod m) and x≡ b (mod n) have a unique solution mod mn

How did we find a solution? Find c≡m−1(b−a) (mod n). Then
x≡ a+mc (mod mn).

Expand to more congruences to get CRT! Let m1, ...,mk be relatively
prime numbers. Then the k equations x≡ a1 (mod m1), ..., x≡ ak
(mod mk) have a unique solution mod m1m2...mk.
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Euler’s Criterion and Square Roots

Theorem (Euler’s Criterion): Suppose p is an odd prime and a is
some integer relatively prime to p. Then a(p−1)/2 is 1 (mod p) if and
only if there exists some integer x such that a≡ x2 (mod p) and −1
otherwise.

How to find the square root? If p≡ 3 (mod 4), and the square roots
exist, then square roots of a mod p are given by ±a(p+1)/4.
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Blum Coin Flipping

How to flip a coin over the phone?

1. Alex chooses distinct primes p, q congruent to 3 (mod 4), and
computes n= pq. He sends n (but not p and q) to Grace.

2. Grace chooses x ∈ (0,n) relatively prime to n and sends a= x2
(mod n) to Alex.

3. Alex, armed with knowledge of p, q, computes the square roots
±x,±y of a, mod n, and sends one to Grace.

4. If Grace got ±x, then she says Alex guessed correctly. Otherwise,
if she gets ±y, she can factor n (since pq|(x+y)(x−y)) and use
that to prove that she won.
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Algebraic Structures

Group: (G,+) with + having the properties of closure, associativity,
existence of identity, existence of inverse.

Abelian group: add commutativity of +.

Ring: add × with closure, associativity, existence of identity, and
left/right distributivity over +.

Field: add existence of inverse of × for all elements except additive
identity.

Galois field: field with finitely many elements. In this class we look at
prime fields: (Zp,+,×) where arithmetic is done mod p.

This material is covered in much greater depth in M113.
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Polynomials

Uniquely specify by coefficients: p(x) = a0+a1x+a2x2+ · · ·+adxd...

... or by d+ 1 points.

Coefficients to points: just evaluate!

Points to coefficients? Lagrange interpolation:

∆i(x) :=
∏j≠i(x− xj)
∏j≠i(xi− xj)

Sum these for all i.

Or set up the Vandermonde matrix and solve.




1 x1 x21 . . . xd1
1 x2 x22 . . . xd2
1 x3 x23 . . . xd3
...

...
... . . . ...

1 xd+1 x2d+1 . . . xdd+1







a0
a1
a2
...
ad



=




y1
y2
y3
...

yd+1



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Secret Sharing

1. Pick some prime q> s,n. We will operate in GF(q).
2. Pick a degree-k− 1 polynomial P such that P(0) = s, i.e.

P(x) = s+a1x+a2x2+ ...+ak−1xk−1, where a1, ...,ak−1 are chosen
randomly.

3. Give P(i) to the ith official.
4. To recover the secret: have k people get together and

interpolate to find P(0).

No information can be recovered with less than k people if done
over a prime field!
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Erasure Codes

Take original message (1,m1),(2,m2), ...,(n,mn) in GF(q) and then
interpolate a polynomial.

Send k extra points. If k drop, it’s ok! Just interpolate and evaluate.
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Berlekamp-Welch

For corruption errors. k packets corrupted. How many packets to
send if message is n packets long? n+2k.

1. Alex interpolates a degree n− 1 polynomial P(x) over the
messages, like for erasure codes.

2. Alex sends n+2k points to Grace:
(1,P(1)),(2,P(2)), . . . ,(n+2k,P(n+2k)).

3. Grace receieves n+2k points (1, r1),(2, r2), . . . ,(n+2k,rn+2k).
4. Grace writes down a system of equations:

qn+k−1xn+k−1
i + · · ·+q2x2i +q1xi+q0 = ri(xki +bk−1xk−1

i + · · ·+b1xi+b0)

for each xi.
5. Grace solves the equations for the coefficients for Q and E.
6. Grace recovers P(x) = Q(x)/E(x) by polynomial division.

More on codes: EE121, EE229AB.

18



Application/Research: PIT and Schwartz-Zippel*

Theorem (Schwartz-Zippel Lemma) : Let Q(x1, ...,xn) be a multivariate
polynomial of total degree d (i.e. the sum of the powers of all the
variables in a term are at most d) over some field F. Fix a finite set
S⊆ F, and let r1,r2, ..., rn be chosen independently and uniformly at
random from S. Then Pr[Q(r1, ..., rn) = 0|Q(x1, ...,xn) ̸≡ 0]≤ d/|S|.
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Proof of SZ*

By induction on n.

Base case: n= 1. Single variable polynomial. At most d roots, so
probability of getting a zero is at most d/|S|.
Inductive step: assume SZ works up to n− 1 variable polynomials.
Suppose Q is not actually the zero polynomial (i.e. doesn’t evaluate
to 0 everywhere). Group terms based on x1:
Q(x1, ...,xn) = ∑k

i=0 xi1Qi(x2, ...,xn) where k is the largest exponent of x1
in Q, and each Qi is nonzero.

Condition on x2 = r2, ...,xn = rn.

By inductive step, we know that Qk(r2, ..., rn) = 0 w.p. at most
(d−k)/|S| since total degree of Qk is at most d−k.

Now suppose Qk(r2, ..., rn) ̸= 0. Then q(x1) = Q(x1,r2, ..., rn) is a
nonzero single-variable polynomial, so q(r1) is zero w.p. at most
k/|S|.
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Proof of SZ, II*

So:

Pr(Q(r1, ..., rn) = 0) = Pr(Q= 0|Qk = 0)Pr(Qk = 0)+
Pr(Q= 0|Qk ̸= 0)Pr(Qk ̸= 0)

≤ 1
(
d−k
|S|

)
+

(
k
|S|

)
1

=
d
|S|
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Application: Finding Perfect Matchings*

Remember definition of perfect matching from MT1?

Bipartite graph. Each node on left matched with exactly one node on
right by an edge.

Theorem (Edmonds): Let A be the matrix obtained from a bipartite
graph G= (U,V,E) as follows:

Aij =
{
xij if ui,vj ∈ E
0 otherwise

Then G has a perfect matching if and only if detA ̸≡ 0.

Proof sketch: based on definition of determinant:

detA= ∑
permutations π

sign(π)A1,π(1)A2,π(2), ...,An,π(n)

Zero in each term if there is no perfect matching (missing edge),
nonzero otherwise. No cancellations because no two terms have
same set of variables. 22



Perfect Matchings II

Determinant is just a polynomial! Use Schwartz-Zippel to test by
plugging random values into the matrix.

Interested in this topic? CS270.

Can we do this without randomness? Hot research topic!
Derandomization has a lot of consequences in complexity theory.

Hardness ⇐⇒ derandomization.
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Conclusion

We hope you’ve enjoyed this semester and learned a lot.

Before CS70: After CS70:
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Thanks for taking CS70!
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