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Today

Same as yesterday (and tomorrow). Review, applications, gigs, cool
examples, research questions...

Probability today!
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Fundamentals

Map of outcomes in a probability space Ω to values in [0,1]:
∑ω∈ΩPr[ω] = 1

Events: set of outcomes. Pr[E] = ∑ω∈EPr[ω].
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Fundamentals

Map of outcomes in a probability space Ω to values in [0,1]:
∑ω∈ΩPr[ω] = 1

Events: set of outcomes. Pr[E] = ∑ω∈EPr[ω].

Inclusion-Exclusion: Pr[A∪B] = Pr[A]+Pr[B]−Pr[A∩B].
Union bound: Pr[A1 ∪A2 ∪ ...∪An]≤ Pr[A1]+Pr[A2]+ ...Pr[An].

Total probability: if A1, ...,An partition the entire sample space
(disjoint, covers all of it), then Pr[B] = Pr[B∩A1]+ ...+Pr[B∩An].
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Conditional Probability

Definition:
Pr[A|B] = Pr[A∩B]

Pr[B] .

Live demo.
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Conditional Probability

Definition:
Pr[A|B] = Pr[A∩B]

Pr[B] .

Live demo.

From definition: Pr[A∩B] = Pr[A]Pr[B|A].
Or, generally: Pr[A1 ∩ ...∩An] = Pr[A1]Pr[A2|A1]...Pr[An|A1 ∩ ...∩An−1].
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Bayes’ Theorem

Pr[A|B] = Pr[A]Pr[B|A]
Pr[B]
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Bayes’ Theorem

Pr[A|B] = Pr[A]Pr[B|A]
Pr[B]

Or if I know for sure that exactly one of A1, ...,An hold, then:

Pr[Ak|B] =
Pr[Ak]Pr[B|Ak]

∑kPr[Ak]Pr[B|Ak]
.
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Bayes’ Theorem

Pr[A|B] = Pr[A]Pr[B|A]
Pr[B]

Or if I know for sure that exactly one of A1, ...,An hold, then:

Pr[Ak|B] =
Pr[Ak]Pr[B|Ak]

∑kPr[Ak]Pr[B|Ak]
.

Useful theorem for inference (updating beliefs). Heavily used in AI.
CS188.
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Random Variables: Discrete

Random variable: function that assigns a real number X(ω) to each
outcome ω in a probability space.
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Random Variables: Discrete

Random variable: function that assigns a real number X(ω) to each
outcome ω in a probability space.

Random variables X, Y are independent if the events Y= a and X= b
are independent for all a, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = ∑t tPr[X= t]

Tail sum: for nonnegative r.v. X: E[X] = ∑∞
i=0Pr[X> i].

Expectation of function: E[g(X)] = ∑t g(t)Pr[X= t]

Variance: Var[X] = E[(X−E[X])2] = E[X2]−E[X]2

Standard deviation: square root of variance.

Linearity of expectation: E[aX+bY] = aE[X]+bE[Y]

For independent RV: E[XY] = E[X]E[Y], Var[X+Y] = Var[X]+Var[Y]
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Example: Random-SAT

Let’s say I have some Boolean clause that looks like this (“3-CNF”)

(a∨b∨c)∧ (b∨d∨e)∧ ...

n clauses (three boolean variables, some may be negated). What is
expected number of clauses that I satisfy with a random assignment?
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Also proves (by probabilistic method) that there exists some
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Turns out that we don’t know any better constant-factor
approximation for this. 7/8 is the best we can do! If we can efficiently
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Example: Random-SAT

Let’s say I have some Boolean clause that looks like this (“3-CNF”)

(a∨b∨c)∧ (b∨d∨e)∧ ...

n clauses (three boolean variables, some may be negated). What is
expected number of clauses that I satisfy with a random assignment?
7n/8.

Doesn’t matter if variables are repeated! Expectation is linear.

Also proves (by probabilistic method) that there exists some
assignment satisfying at least 7/8 of the clauses.

Turns out that we don’t know any better constant-factor
approximation for this. 7/8 is the best we can do! If we can efficiently
do better (i.e. 7/8+ ε fraction of clauses satisfied, for constant ε) this
would prove P= NP which would, among many other things, render
public key cryptography impossible!

“Hardness of approximation”. Ongoing topic of research. 7



Random Variables: Continuous

Distributions represented with a pdf

fX(t) = lim
δ→0

Pr[X ∈ [t, t+δ ]]
δ

...or, equivalently, a cdf:

FX(t) = Pr[X≤ t] =
� t

−∞
fX(z)dz.
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Random Variables: Continuous

Distributions represented with a pdf

fX(t) = lim
δ→0

Pr[X ∈ [t, t+δ ]]
δ

...or, equivalently, a cdf:

FX(t) = Pr[X≤ t] =
� t

−∞
fX(z)dz.

Pr[X ∈ [a,b]] =
� b

a
fX(t)dt= FX(b)−FX(a)
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Expectation/Variance for Continuous

Sum → Integral. Most properties carry over.

E[X] =
� ∞

−∞
tfX(t)dt

E[g(X)] =
� ∞

−∞
g(t)fX(t)dt

Var[X] = E[(X−E[X])2] = E[X2]−E[X]2

Linearity of expectation: E[aX+bY] = aE[X]+bE[Y]

For independent RV: E[XY] = E[X]E[Y], Var[X+Y] = Var[X]+Var[Y]

9



Application: Streaming Algorithm for Counting Uniques

Let’s say that you’re building a server that wants to count unique
visitors. But you only have a very small amount of memory - enough
to remember one number. How do you distinguish between a million
unique visitors and a single IP address sending a million requests to
your site?
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Application: Streaming Algorithm for Counting Uniques

Let’s say that you’re building a server that wants to count unique
visitors. But you only have a very small amount of memory - enough
to remember one number. How do you distinguish between a million
unique visitors and a single IP address sending a million requests to
your site?

Map each IP address to a single number between 0 and 1 uniformly.

Keep the minimum number of all the visitors to your website (only
requires space for one number!).

What’s the number you get? Minimum of Uniform(0,1).Distribution?
CDF:

Pr(min
i
Xi ≤ x) = 1−Pr(all xi at least x) = 1− (1− x)n

So PDF is f(x) = n(1− x)n−1. Expectation:
� 1
0 xn(1− x)n−1dx= 1/(n+ 1).
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Application: Streaming Algorithm for Counting Uniques

Let’s say that you’re building a server that wants to count unique
visitors. But you only have a very small amount of memory - enough
to remember one number. How do you distinguish between a million
unique visitors and a single IP address sending a million requests to
your site?

Map each IP address to a single number between 0 and 1 uniformly.

Keep the minimum number of all the visitors to your website (only
requires space for one number!).

What’s the number you get? Minimum of Uniform(0,1).Distribution?
CDF:

Pr(min
i
Xi ≤ x) = 1−Pr(all xi at least x) = 1− (1− x)n

So PDF is f(x) = n(1− x)n−1. Expectation:
� 1
0 xn(1− x)n−1dx= 1/(n+ 1).

Just invert the minimum number to estimate number of unique
visitors! 10



Distributions

Discrete: Uniform, Bernoulli, geometric, binomial, Poisson

Continuous: Exponential, normal, uniform.
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Distributions

Discrete: Uniform, Bernoulli, geometric, binomial, Poisson

Continuous: Exponential, normal, uniform.

Make sure you know what they mean intuitively (although formula
sheet will have the formulas for them).

For instance: What’s the distribution of the sum of two independent
binomial random variables? What’s the distribution of the minimum
of two independent geometric random variables? Prove these
formally for practice!

11



Tail Bounds

Markov: For X non-negative, a positive,

Pr[X≥ A]≤ E[X]
a .
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Tail Bounds

Markov: For X non-negative, a positive,

Pr[X≥ A]≤ E[X]
a .

Chebyshev: For all a positive,

Pr[|X−E[X]|≥ a]≤ Var[X]
a2 .
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Tail Bounds

Markov: For X non-negative, a positive,

Pr[X≥ A]≤ E[X]
a .

Chebyshev: For all a positive,

Pr[|X−E[X]|≥ a]≤ Var[X]
a2 .

Chernoff: Family of exponential bounds for sum of mutually
independent 0-1 random variables. Derive by noting that
Pr[X≥ a] = Pr[etX ≥ eta], and then applying Markov to bound

Pr[etX ≥ eta]≤ E[etX]
eta

for a good value of t.
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Law of Large Numbers and CLT

If X1,X2, ... are pairwise independent, and identically distributed with
mean µ : Pr[

���∑i Xi
n −µ

���≥ ε]→ 0 as n→ ∞.
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n −µ

���≥ ε]→ 0 as n→ ∞.

With many i.i.d. samples we converge not only to the mean, but also
to a normal distribution with the same variance.

CLT: Suppose X1,X2, ... are i.i.d. random variables with expectation µ
and variance σ 2. Let

Sn :=
(∑i Xi)−nµ

σ
√
n

Then Sn tends towards N (0,1) as n→ ∞.
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Law of Large Numbers and CLT

If X1,X2, ... are pairwise independent, and identically distributed with
mean µ : Pr[

���∑i Xi
n −µ

���≥ ε]→ 0 as n→ ∞.

With many i.i.d. samples we converge not only to the mean, but also
to a normal distribution with the same variance.

CLT: Suppose X1,X2, ... are i.i.d. random variables with expectation µ
and variance σ 2. Let

Sn :=
(∑i Xi)−nµ

σ
√
n

Then Sn tends towards N (0,1) as n→ ∞.

Or:
Pr[Sn ≤ a]→ 1√

2π

� α

−∞
e−x2/2dx

This is an approximation, not a bound.
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Markov Chains

Live Demo
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Markov Chains

Live Demo

Transition matrix P. Timesteps correspond to matrix multiplication:
π → πP.
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Markov Chains

Live Demo

Transition matrix P. Timesteps correspond to matrix multiplication:
π → πP.

Hitting time: How long does it take us to get to some state j?
Strategy: let β (i) be the time it takes to get to j from i, for each state
i. β (j) = 0. Set up system of linear equations and solve.
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State Classifications

State j is accessible from i: can get from i to j with nonzero
probability. Equivalently: exists path from i to j.
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State Classifications

State j is accessible from i: can get from i to j with nonzero
probability. Equivalently: exists path from i to j.

i accessible from j and j accessible from i: i, j communicate.

If, given that we’re at some state, we will see that state again
sometime in the future with probability 1, state is recurrent. If there
is a nonzero probability that we don’t ever see state again, state is
transient.

Every finite chain has a recurrent state.

State is periodic if, given that we’re currently at that state, the
probability that we are at that state s steps later is zero unless s
divides some integer ∆> 1.

Ergodic state: aperiodic + recurrent.
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Example: Markov Proof

Here’s a theorem and a proof of the sort that we might ask you to do
on the test.

Theorem: If a transient state j is accessible from state i, then state i
is transient.
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contradiction that i is recurrent. Then if we’re at j, we have to hit i
again (because i is recurrent, so we have to go back to i if we go from
i to j). But when we’re at i, we know that we’re definitely going to hit j
sometime (because there’s a nonzero chance of going to j from i, and
we’ll be back at i infinitely many times due to it being recurrent).So j
is recurrent. Contradiction! So i has to be transient.
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Markov Chain Classifications

Irreducible Markov chain: all states communicate with every other
state. Equivalently: graph representation is strongly connected.
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Markov Chain Classifications

Irreducible Markov chain: all states communicate with every other
state. Equivalently: graph representation is strongly connected.

Periodic Markov chain: any state is periodic.

Ergodic Markov chain: every state is ergodic. Any finite, irreducible,
aperiodic Markov chain is ergodic.
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Stationary Distributions

Distribution is unchanged by state. Intuitively: if I have a lot
(approaching infinity) of people on the same MC: the number of
people at each state is constant (even if the individual people may
move around).
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(approaching infinity) of people on the same MC: the number of
people at each state is constant (even if the individual people may
move around).

To find limiting distribution? Solve balance equations: π = πP.

Let rti,j be the probability that we first (if i= j, we don’t count the
zeroth timestep) hit j exactly t timesteps after we start at i. Then
hi,j = ∑t≥1 trti,j.
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Stationary Distributions

Distribution is unchanged by state. Intuitively: if I have a lot
(approaching infinity) of people on the same MC: the number of
people at each state is constant (even if the individual people may
move around).

To find limiting distribution? Solve balance equations: π = πP.

Let rti,j be the probability that we first (if i= j, we don’t count the
zeroth timestep) hit j exactly t timesteps after we start at i. Then
hi,j = ∑t≥1 trti,j.

Suppose we are given a finite, irreducible, aperiodic Markov chain.
Then:

• There is a unqiue stationary distribution π .
• For all j, i, the limit limt→∞Ptj,i exists and is independent of j.
• πi = limt→∞Ptj,i = 1/hi,i
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Random Walks

Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.
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uniform probability and walk down it.

For undirected graphs: aperiodic if and only if graph is not bipartite.

Stationary distribution: πv = d(v)/(2|E|).
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Random Walks

Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.

For undirected graphs: aperiodic if and only if graph is not bipartite.

Stationary distribution: πv = d(v)/(2|E|).
Cover time (expected time that it takes to hit all the vertices, starting
from the worst vertex possible): bounded above by 4|V||E|.
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Example/Gig: Parrondo’s Paradox

Let’s say I have two slot machines. Each one takes some amount of
money and then spits out some amount of money.
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Let’s say I have two slot machines. Each one takes some amount of
money and then spits out some amount of money.

Suppose that the expected return of each machine is negative - I get
less money than I put in... the house always wins, after all. If I play
machine 1 for a while, I expect to end up broke. Same with machine 2.

20



Example/Gig: Parrondo’s Paradox

Let’s say I have two slot machines. Each one takes some amount of
money and then spits out some amount of money.

Suppose that the expected return of each machine is negative - I get
less money than I put in... the house always wins, after all. If I play
machine 1 for a while, I expect to end up broke. Same with machine 2.

So if I play machine 1 and machine 2 alternately, I should expect to
end up broke too, right? Hmm...
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Parrondo’s Paradox II

Let’s say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.
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Let’s say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

• Case A: If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

• Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What’s the probability of winning a round?
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Let’s say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

• Case A: If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

• Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What’s the probability of winning a round? 1/3 probability of case A
happening, so it would be

1
3 (0.09)+ 2

3 (0.74) =
157
300 >

1
2

right?
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Let’s say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

• Case A: If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

• Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What’s the probability of winning a round? 1/3 probability of case A
happening, so it would be

1
3 (0.09)+ 2

3 (0.74) =
157
300 >

1
2

right? Are you sure? No!
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Parrondo’s Paradox II

Let’s say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

• Case A: If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

• Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What’s the probability of winning a round? 1/3 probability of case A
happening, so it would be

1
3 (0.09)+ 2

3 (0.74) =
157
300 >

1
2

right? Are you sure? No! Probability of case A happening is not 1/3!
(be careful about nonuniform probability spaces. MT2 1.1/1.2! 21



Parrondo’s Paradox III

So how often do we end up with case A? Here’s the approach: one
state for each value of d (mod 3).

Aperiodic? Irreducible? Yep!
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Parrondo’s Paradox III

So how often do we end up with case A? Here’s the approach: one
state for each value of d (mod 3).

Aperiodic? Irreducible? Yep! Limiting distribution = stationary
distribution! Just solve for the stationary distribution with π = πP.

Result: π = [0.382604,0.154728,0.462668].
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Parrondo’s Paradox III

So how often do we end up with case A? Here’s the approach: one
state for each value of d (mod 3).

Aperiodic? Irreducible? Yep! Limiting distribution = stationary
distribution! Just solve for the stationary distribution with π = πP.

Result: π = [0.382604,0.154728,0.462668]. Plug in:

0.3826(0.09)+(0.1547+0.4627)(0.74) = 0.4913 <
1
2

So I lose money in the long run.
22



Parrondo’s Paradox III

So now, what if I decide to flip a fair coin to figure out which machine
to play?
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Parrondo’s Paradox III

So now, what if I decide to flip a fair coin to figure out which machine
to play?

I have d dollars... if d is a multiple of 3, probability of winning is:
1
2 (0.49)+ 1

2 (0.09) = 0.29

If d isn’t a multiple of 3, probability of winning is:
1
2 (0.49)+ 1

2 (0.74) = 0.615
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Parrondo’s Paradox IV

Stationary distribution: π = [0.344583,0.254343,0.401075].
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Parrondo’s Paradox IV

Stationary distribution: π = [0.344583,0.254343,0.401075].

Probability of winning:

0.3446(0.29)+(0.2543+0.4011)(0.615) = 0.503011 > 1
2
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Parrondo’s Paradox IV

Stationary distribution: π = [0.344583,0.254343,0.401075].

Probability of winning:

0.3446(0.29)+(0.2543+0.4011)(0.615) = 0.503011 > 1
2

So we expect to... gain money??!?!!!?!?!
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Parrondo’s Paradox IV

Stationary distribution: π = [0.344583,0.254343,0.401075].

Probability of winning:

0.3446(0.29)+(0.2543+0.4011)(0.615) = 0.503011 > 1
2

So we expect to... gain money??!?!!!?!?!

Did we just break linearity of expectation?
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Parrondo’s Paradox IV

Stationary distribution: π = [0.344583,0.254343,0.401075].

Probability of winning:

0.3446(0.29)+(0.2543+0.4011)(0.615) = 0.503011 > 1
2

So we expect to... gain money??!?!!!?!?!

Did we just break linearity of expectation? No! It doesn’t make a
whole lot of sense to talk about “expected winnings” for a state
without taking into account the current state. Our distribution across
states changes between the two games!
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Questions?
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