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Same as yesterday (and tomorrow). Review, applications, gigs, cool
examples, research questions...

Probability today!
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Fundamentals

Map of outcomes in a probability space Q to values in [0,1]:
YoecqPrlo] =1

Events: set of outcomes. Pr[E] = ¥ ek Pr[o].
Inclusion-Exclusion: Pr[AUB] = Pr[A] + Pr[B] — Pr[ANB].
Union bound: PrlAyUA;U...UAL] < Pr[Aq] + Pr[Ay] + ... Pr[An].

Total probability: if Aq,...,A, partition the entire sample space
(disjoint, covers all of it), then Pr[B] = Pr[BNAj] + ... + Pr[BNAs].
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Conditional Probability

Definition:
Pr[ANB]

Pr[A|B] = PrE]
Live demo.
From definition: Pr[AN B] = Pr[A] Pr[BJA].

Or, generally: Pr[A1N...NAs] = Pr[Aq] Pr[Az|Aq]... Pr[Ap|A N ...NAp ).
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Bayes’ Theorem

Pr[A] Pr[B|A]

PriAlel = =5

Or if I know for sure that exactly one of A, ...,A, hold, then:

Pr[A] Pr[BJAk]
Y Pr[Ag] Pr[BIAL]

Pr[Ag|B] =

Useful theorem for inference (updating beliefs). Heavily used in Al.
CS188.



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all a, b.



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPr[X =]

Tail sum: for nonnegative rv. X: E[X] = ¥, Pr[X > i].



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPr[X =]
Tail sum: for nonnegative rv. X: E[X] = ¥, Pr[X > i].

Expectation of function: E[g(X)] = X+ g(t) Pr[X =]



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPr[X =]

Tail sum: for nonnegative rv. X: E[X] = ¥, Pr[X > i].
Expectation of function: E[g(X)] = X+ g(t) Pr[X =]
Variance: Var[X] = E[(X — E[X])?] = E[X?] — E[X]?

Standard deviation: square root of variance.



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPr[X =]

Tail sum: for nonnegative rv. X: E[X] = ¥, Pr[X > i].
Expectation of function: E[g(X)] = X+ g(t) Pr[X =]
Variance: Var[X] = E[(X — E[X])?] = E[X?] — E[X]?
Standard deviation: square root of variance.

Linearity of expectation: E[aX+ bY] = aE[X] + bE[Y]



Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=aand X=0b
are independent for all g, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPr[X =]

Tail sum: for nonnegative rv. X: E[X] = ¥, Pr[X > i].
Expectation of function: E[g(X)] = X+ g(t) Pr[X =]

Variance: Var[X] = E[(X — E[X])?] = E[X?] — E[X]?

Standard deviation: square root of variance.

Linearity of expectation: E[aX+ bY] = aE[X] + bE[Y]

For independent RV: E[XY] = E[X]E[Y], Var[X+ Y] = Var[X] + Var[Y]
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Example: Random-SAT

Let's say | have some Boolean clause that looks like this (“3-CNF”)

(avbve)a(bvdve)A...

n clauses (three boolean variables, some may be negated). What is
expected number of clauses that | satisfy with a random assignment?
7n/8.

Doesn't matter if variables are repeated! Expectation is linear.

Also proves (by probabilistic method) that there exists some
assignment satisfying at least 7/8 of the clauses.

Turns out that we don’t know any better constant-factor
approximation for this. 7/8 is the best we can do! If we can efficiently
do better (i.e. 7/8 + ¢ fraction of clauses satisfied, for constant €) this
would prove P = NP which would, among many other things, render
public key cryptography impossible!

“Hardness of approximation”. Ongoing topic of research. ;
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Random Variables: Continuous

PriX <z |
Fx(x) /
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Distributions represented with a pdf

. PriXel[tt+46]]
5lt) = glno 5
...or, equivalently, a cdf:

(O =Prix< = [ ' flayde.

b
PriX € [a,b]] = /a fr(t)dt = Fx(b) — Fx(a)



Expectation/Variance for Continuous

Sum — Integral. Most properties carry over.
6N = [t
Elg00] = | _g(f()dt

Varlx] = E[(x — E[XI)’] = Ep2] - EIXP

Linearity of expectation: E[aX+ bY] = aE[X] + bE[Y]
For independent RV: E[XY] = E[X]E[Y], Var[X + Y] = Var[X] + Var[Y]
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Application: Streaming Algorithm for Counting Uniques

Let's say that you're building a server that wants to count unique
visitors. But you only have a very small amount of memory - enough
to remember one number. How do you distinguish between a million
unique visitors and a single IP address sending a million requests to
your site?

Map each IP address to a single number between 0 and 1 uniformly.

Keep the minimum number of all the visitors to your website (only
requires space for one number!).

What's the number you get? Minimum of Uniform(0,1).Distribution?
CDF:
Pr(minX; <x) =1—Pr(all x; at least x) =1—(1—x)"
1

So PDF is f(x) = n(1—x)"~". Expectation: [y xn(1—x)"""dx=1/(n+1).
Just invert the minimum number to estimate number of unique
visitors! 10
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Distributions

Discrete: Uniform, Bernoulli, geometric, binomial, Poisson
Continuous: Exponential, normal, uniform.

Make sure you know what they mean intuitively (although formula
sheet will have the formulas for them).

For instance: What's the distribution of the sum of two independent
binomial random variables? What's the distribution of the minimum
of two independent geometric random variables? Prove these
formally for practice!

1
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Tail Bounds

Markov: For X non-negative, a positive,

Prix> Al < %
a

Chebyshev: For all a positive,

Pr[X— E[X]| > a] < VC”[X]

Chernoff: Family of exponential bounds for sum of mutually
independent 0-1 random variables. Derive by noting that
Pr[X > a] = Pr[eX > ¢'9], and then applying Markov to bound

E[etX]

et(]

Prle > ] <

for a good value of t.
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Law of Large Numbers and CLT

If X1,X2,... are pairwise independent, and identically distributed with
mean u: Pr[’%—u‘ >¢e]l—0asn— eo.

With many i.i.d. samples we converge not only to the mean, but also
to a normal distribution with the same variance.
CLT: Suppose X1,X,,... are i.i.d. random variables with expectation u
and variance o?. Let

(XiXi) —nu

ovn

Then S, tends towards .47(0,1) as n — oo

Sp =

Or:
r Pr[Sh < a] — L/a e~/ 2qx
h= V2T J—e

This is an approximation, not a bound.
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Transition matrix P. Timesteps correspond to matrix multiplication:
T — 7P.
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Markov Chains

Live Demo

Transition matrix P. Timesteps correspond to matrix multiplication:
T — 7P.

Hitting time: How long does it take us to get to some state j?
Strategy: let B(i) be the time it takes to get to j from |, for each state
I. B(J) = 0. Set up system of linear equations and solve.

14
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State Classifications

State j is accessible from i: can get from i to j with nonzero
probability. Equivalently: exists path from i to j.

i accessible from j and j accessible from i: i, j communicate.

If, given that we're at some state, we will see that state again
sometime in the future with probability 1, state is recurrent. If there
is a nonzero probability that we don’t ever see state again, state is
transient.

Every finite chain has a recurrent state.

State is periodic if, given that we're currently at that state, the
probability that we are at that state s steps later is zero unless s
divides some integer A > 1.

Ergodic state: aperiodic + recurrent.
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probability that, starting at i, we will go to j, at which point we will
never be able to see i again. So i is transient.

On the other hand, suppose i is accessible from j. Suppose for
contradiction that i is recurrent. Then if we're at j, we have to hit i
again (because i is recurrent, so we have to go back to i if we go from
i to j). But when we're at i, we know that we're definitely going to hit j
sometime (because there’'s a nonzero chance of going to j from i, and
we'll be back at i infinitely many times due to it being recurrent).So j
is recurrent. Contradiction! So i has to be transient.
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Markov Chain Classifications

Irreducible Markov chain: all states communicate with every other
state. Equivalently: graph representation is strongly connected.

Periodic Markov chain: any state is periodic.

Ergodic Markov chain: every state is ergodic. Any finite, irreducible,
aperiodic Markov chain is ergodic.
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Stationary Distributions

Distribution is unchanged by state. Intuitively: if I have a lot
(approaching infinity) of people on the same MC: the number of
people at each state is constant (even if the individual people may
move around).

To find limiting distribution? Solve balance equations: 7 = P.

Let rt be the probability that we first (if i = j, we don’t count the

zeroth timestep) hit j exactly t timesteps after we start at i. Then
hij= Zzzﬁr,-_j-

Suppose we are given a finite, irreducible, aperiodic Markov chain.

Then:

- There is a unqgiue stationary distribution 7.
- Forallj, i, the limit lim;_e P}J- exists and is independent of J.

T W= iMoo P/t,i = ’I/h/‘j



Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.
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Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.

For undirected graphs: aperiodic if and only if graph is not bipartite.
Stationary distribution: m, = d(v)/(2|E|).
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Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.

For undirected graphs: aperiodic if and only if graph is not bipartite.
Stationary distribution: m, = d(v)/(2|E|).

Cover time (expected time that it takes to hit all the vertices, starting
from the worst vertex possible): bounded above by 4|V||E|.
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Example/Gig: Parrondo’s Paradox

Let's say | have two slot machines. Each one takes some amount of
money and then spits out some amount of money.
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Example/Gig: Parrondo’s Paradox

Let's say | have two slot machines. Each one takes some amount of
money and then spits out some amount of money.

Suppose that the expected return of each machine is negative - | get
less money than | put in... the house always wins, after all. If | play
machine 1for a while, | expect to end up broke. Same with machine 2.

20



Example/Gig: Parrondo’s Paradox

Let's say | have two slot machines. Each one takes some amount of
money and then spits out some amount of money.

Suppose that the expected return of each machine is negative - | get
less money than | put in... the house always wins, after all. If | play
machine 1for a while, | expect to end up broke. Same with machine 2.

So if | play machine 1 and machine 2 alternately, | should expect to
end up broke too, right? Hmm...
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Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.
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Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

- Case A If d is a multiple of 3 then you gain a dollar w.p. 0.09 and

lose a dollar w.p. 0.91.
- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar

w.p. 0.26.
What's the probability of winning a round?
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Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

- Case A If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What's the probability of winning a round? 1/3 probability of case A
happening, so it would be

1 2 157 1

3(0.09)+35(0.74) = 55> 5
right?

21



Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

- Case A If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What's the probability of winning a round? 1/3 probability of case A
happening, so it would be

1 2 157 1

3(0.09)+35(0.74) = 55> 5
right? Are you sure?

21



Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

- Case A If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What's the probability of winning a round? 1/3 probability of case A
happening, so it would be
1 2 157 1
3(0.09)+35(0.74) = 55> 5
right? Are you sure? No!

21



Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

- Case A If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What's the probability of winning a round? 1/3 probability of case A
happening, so it would be
1 2 157 1
3(0.09)+35(0.74) = 55> 5
right? Are you sure? No! Probability of case A happening is not 1/3!
(be careful about nonuniform probability spaces. MT2 1.1/1.2! o



Parrondo’s Paradox Ill

So how often do we end up with case A? Here's the approach: one
state for each value of d (mod 3).

Aperiodic? Irreducible? Yep!
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distribution! Just solve for the stationary distribution with = = nP.
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Parrondo’s Paradox Ill

So how often do we end up with case A? Here's the approach: one
state for each value of d (mod 3).
o 0.7y

@ : 2
%@

Aperiodic? Irreducible? Yep! Limiting distribution = stationary
distribution! Just solve for the stationary distribution with = = nP.

Result: mw = [0.382604,0.154728,0.462668].

22



Parrondo’s Paradox Ill

So how often do we end up with case A? Here's the approach: one
state for each value of d (mod 3).
o 0.7y

@ : 2
%@

Aperiodic? Irreducible? Yep! Limiting distribution = stationary
distribution! Just solve for the stationary distribution with = = nP.

Result: 7 = [0.382604,0.154728,0.462668]. Plug in:
1
0.3826(0.09) + (01547 +0.4627)(0.74) = 0.4913 < 5

So | lose money in the long run.
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Parrondo’s Paradox Ill

So now, what if | decide to flip a fair coin to figure out which machine
to play?
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Parrondo’s Paradox Ill

So now, what if | decide to flip a fair coin to figure out which machine
to play?

| have d dollars... if d is a multiple of 3, probability of winning is:

1 1
5(0.49) +5(0.09) = 0.29

If d isn't @ multiple of 3, probability of winning is:

1 1
5(0.49)+5(0.74) = 0.615
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Parrondo’s Paradox IV

Stationary distribution: m = [0.344583,0.254343,0.401075].
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Parrondo’s Paradox IV

Stationary distribution: m = [0.344583,0.254343,0.401075].
Probability of winning:

1
0.3446(0.29) +(0.2543+0.4011)(0.615) = 0.503011 > 5
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Parrondo’s Paradox IV

Stationary distribution: m = [0.344583,0.254343,0.401075].
Probability of winning:

1
0.3446(0.29) +(0.2543+0.4011)(0.615) = 0.503011 > 5

So we expect to... gain money??1?111?1?!
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Parrondo’s Paradox IV

Stationary distribution: m = [0.344583,0.254343,0.401075].
Probability of winning:

1
0.3446(0.29) +(0.2543+0.4011)(0.615) = 0.503011 > 5

So we expect to... gain money??1?111?1?!

Did we just break linearity of expectation?
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Parrondo’s Paradox IV

Stationary distribution: m = [0.344583,0.254343,0.401075].
Probability of winning:

1
0.3446(0.29) +(0.2543+0.4011)(0.615) = 0.503011 > 5

So we expect to... gain money??1?111?1?!

Did we just break linearity of expectation? No! It doesn’t make a
whole lot of sense to talk about “expected winnings” for a state
without taking into account the current state. Our distribution across
states changes between the two games!
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Questions?



