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Conditional Probability

Definition:
PrANB]

Pr[B]

Pr{A|B] =

Live demo.
From definition: Pr[AN B] = Pr[A] Pr[B|A].
Or, generally: Pr[A1N...NAp] = Pr[A] Pr{Az|A1]... PriAp|Ar NN A 1]

Same as yesterday (and tomorrow). Review, applications, gigs, cool
examples, research questions...

Probability today!
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Bayes’ Theorem

Pr[A] Pr[B|A]

PrlAlR] = =5

Or if I know for sure that exactly one of A4,...,A, hold, then:
Pr[Ar] Pr[BIA]

PriAd ] = & BradPrBlAl -

Useful theorem for inference (updating beliefs). Heavily used in Al.
CS188

Fundamentals

Map of outcomes in a probability space Q to values in [0,1]:
Yoca Prle] =1

Events: set of outcomes. Pr[E] = ¥y Pr{o].
Inclusion-Exclusion: Pr[AUB] = Pr[A] + Pr[B] — Pr[AN B].
Union bound: Pr[AUA; U...UA,] < Pr[Ar]+ Pr[As] + ... Pr{An].

Total probability: if Ay, ...,A, partition the entire sample space
(disjoint, covers all of it), then Pr[B] = Pr[BNA] + ...+ Pr[BNAy].
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Random Variables: Discrete

Random variable: function that assigns a real number X(w) to each
outcome w in a probability space.

Random variables X, Y are independent if the events Y=a and X=b
are independent for all @, b. If X, Y independent, then f(X), g(Y)
independent for all f, g.

Expectation: E[X] = Y tPriX ={]

Tail sum: for nonnegative rv. X: E[X] = Xi°  Pr[X > i].
Expectation of function: E[g(X)] = X+ g(t) PriX =t]

Variance: Var[X] = E[(X — E[X])?] = E[X?] — E[X]?

Standard deviation: square root of variance.

Linearity of expectation: E[aX + bY] = aE[X] + bE[Y]

For independent RV: E[XY] = E[X]E[Y], Var[X+ Y] = Var[X] + Var[Y]




Let's say | have some Boolean clause that looks like this (“3-CNF”)

(avbVE)A(bVdVe)A...

n clauses (three boolean variables, some may be negated). What is
expected number of clauses that | satisfy with a random assignment?
7n/8.

Doesn't matter if variables are repeated! Expectation is linear.

Also proves (by probabilistic method) that there exists some
assignment satisfying at least 7/8 of the clauses.

Turns out that we don’t know any better constant-factor
approximation for this. 7/8 is the best we can do! If we can efficiently
do better (i.e. 7/8 + ¢ fraction of clauses satisfied, for constant &) this
would prove P = NP which would, among many other things, render
public key cryptography impossible!

“Hardness of approximation”. Ongoing topic of research.

Application: Streaming Algorithm for Counting Uniques

Let's say that you're building a server that wants to count unique
visitors. But you only have a very small amount of memory - enough
to remember one number. How do you distinguish between a million
unique visitors and a single IP address sending a million requests to
your site?

Map each IP address to a single number between 0 and 1 uniformly.
Keep the minimum number of all the visitors to your website (only
requires space for one number!).

What's the number you get? Minimum of Uniform(0,1).Distribution?
CDF:
Pr(minX; <x) =1-Pr(all x; at least x) = 1—(1—x)"
1

So PDF is f(x) = n(1—x)"~". Expectation: [y xn(1—x)"~"dx=1/(n+1).
Just invert the minimum number to estimate number of unique
visitors!

Example: Random-SAT Random Variables: Continuous Expectation/Variance for Continuous

Distributions represented with a pdf

(0= tim Prix e [St.t+ Bl

...or, equivalently, a cdf:

ot
() =Prix<t= [ f(@)az

PriX € [a,b]] = /bfx(t)dt — Fe(b) - Fx(a)
@ 8

Distributions

Discrete: Uniform, Bernoulli, geometric, binomial, Poisson
Continuous: Exponential, normal, uniform.

Make sure you know what they mean intuitively (although formula
sheet will have the formulas for them).

For instance: What's the distribution of the sum of two independent
binomial random variables? What's the distribution of the minimum
of two independent geometric random variables? Prove these
formally for practice!

n

Sum — Integral. Most properties carry over.

EX] = [ ::tfx(t)dt

Elg] = [ ah(vat
Var(X] = E[(X — EIX))’] = EDC] — E[X]?
Linearity of expectation: E[aX + bY] = aE[X] + bE[Y]
For independent RV: E[XY] = E[X]E[Y], Var[X+ Y] = Var[X] + Var[Y]
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Tail Bounds

Markov: For X non-negative, a positive,

Prix>A] < U
a
Chebyshev: For all a positive,

pr{jx— 1| > o < 2.
a

Chernoff: Family of exponential bounds for sum of mutually

independent 0-1 random variables. Derive by noting that

Pr[X > a] = Pr[e > ¢'9], and then applying Markov to bound

E[QIX]

X ta
Pr[e¥ > ¢ ]SW

for a good value of t.
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Law of Large Numbers and CLT Markov Chains State Classifications

If X1,X,, ... are pairwise independent, and identically distributed with
mean p: Pr[‘%—u‘ >¢gl—=0asn— oo

With many i.i.d. samples we converge not only to the mean, but also
to a normal distribution with the same variance.

CLT: Suppose Xi,X2,... are i.i.d. random variables with expectation p

and variance o2 Let
(ZAX/)*n‘u
ovn

Then S, tends towards .47(0,1) as n — eo.

Spi=

or:
Pr[Sy <a] — L/“ e dx
"= V2T J e

This is an approximation, not a bound.

Here's a theorem and a proof of the sort that we might ask you to do
on the test.

Theorem: If a transient state j is accessible from state i, then state i
is transient.

Proof: Suppose i is not accessible from j. Then there is a nonzero
probability that, starting at i, we will go to j, at which point we will
never be able to see j again. So i is transient.

On the other hand, suppose i is accessible from j. Suppose for
contradiction that i is recurrent. Then if we're at j, we have to hit i
again (because i is recurrent, so we have to go back to i if we go from
i to j). But when we're at i, we know that we're definitely going to hit j
sometime (because there's a nonzero chance of going to j from i, and
we'll be back at i infinitely many times due to it being recurrent).So j
is recurrent. Contradiction! So i has to be transient.
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Example: Markov Proof

Live Demo

Transition matrix P. Timesteps correspond to matrix multiplication:
T — 7P.

Hitting time: How long does it take us to get to some state j?
Strategy: let B(i) be the time it takes to get to j from i, for each state
i. B(j) = 0. Set up system of linear equations and solve.

Irreducible Markov chain: all states communicate with every other
state. Equivalently: graph representation is strongly connected.

Periodic Markov chain: any state is periodic.

Ergodic Markov chain: every state is ergodic. Any finite, irreducible,
aperiodic Markov chain is ergodic.
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Markov Chain Classifications

State j is accessible from i: can get from i to j with nonzero
probability. Equivalently: exists path from i to j.

i accessible from j and j accessible from i: i, j communicate.

If, given that we're at some state, we will see that state again
sometime in the future with probability 1, state is recurrent. If there
is a nonzero probability that we don't ever see state again, state is
transient.

Every finite chain has a recurrent state.

State is periodic if, given that we're currently at that state, the

probability that we are at that state s steps later is zero unless s
divides some integer A > 1.

Ergodic state: aperiodic + recurrent.

Distribution is unchanged by state. Intuitively: if | have a lot
(approaching infinity) of people on the same MC: the number of
people at each state is constant (even if the individual people may
move around).

To find limiting distribution? Solve balance equations: = = nP.

Let r}J be the probability that we first (if i = j, we don’t count the
zeroth timestep) hit j exactly t timesteps after we start at i. Then

hij= Y1 Uf,f
Suppose we are given a finite, irreducible, aperiodic Markov chain.
Then:

- There is a ungiue stationary distribution z.

- Forallj, i, the limit IimeP;_, exists and is independent of j.

© iy =limew P =1/hy;
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Stationary Distributions




Markov chain on an undirected graph. At a vertex, pick edge with
uniform probability and walk down it.

For undirected graphs: aperiodic if and only if graph is not bipartite.
Stationary distribution: m, = d(v)/(2|E]).

Cover time (expected time that it takes to hit all the vertices, starting
from the worst vertex possible): bounded above by 4|V|||.

So how often do we end up with case A? Here's the approach: one
state for each value of d (mod 3).

: /@
=Ry
t—"z\e
Q)
Aperiodic? Irreducible? Yep! Limiting distribution = stationary
distribution! Just solve for the stationary distribution with & = zP.

Result: 7 =[0.382604,0.154728,0.462668]. Plug in:

;
0.3826(0.09) +-(0.1547+-0.4627)(0.74) = 0.4913 < 5

So | lose money in the long run.
22
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Parrondo’s Paradox Il

Example/Gig: Parrondo’s Paradox

Let's say | have two slot machines. Each one takes some amount of
money and then spits out some amount of money.

Suppose that the expected return of each machine is negative - | get
less money than | put in... the house always wins, after all. If | play
machine 1 for a while, | expect to end up broke. Same with machine 2.

So if | play machine 1and machine 2 alternately, | should expect to
end up broke too, right? Hmm...

So now, what if | decide to flip a fair coin to figure out which machine
to play?

I'have d dollars... if d is a multiple of 3, probability of winning is:
1 1
5(0.49)4-5(0409)7 0.29

If d isn't a multiple of 3, probability of winning is:

1 1
5(0:49)+ 5(0.74) = 0.615
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Parrondo’s Paradox Il Parrondo’s Paradox IV

Parrondo’s Paradox Il

Let's say that the slot machines work as follows:

Machine 1: Put in some money. You gain a dollar w.p. 0.49 and lose a
dollar w.p. 0.51. Pretty obvious that you lose money playing this
game.

Machine 2: You put in d dollars.

-+ Case A: If d is a multiple of 3 then you gain a dollar w.p. 0.09 and
lose a dollar w.p. 0.91.

- Case B: Otherwise, you gain a dollar w.p. 0.74 and lose a dollar
w.p. 0.26.

What's the probability of winning a round? 1/3 probability of case A
happening, so it would be

1 2 157 1

§(0.09)+ 5(0.74) =300 > 5
right? Are you sure? No! Probability of case A happening is not 1/3!

(be careful about nonuniform probability spaces. MT2 11/1.2! 5%

Stationary distribution: w = [0.344583,0.254343,0.401075].
Probability of winning:

N —

0.3446(0.29) + (0.2543 4 0.4011)(0.615) = 0.503011 >

So we expect to... gain money??!?11121?!

Did we just break linearity of expectation? No! It doesn’'t make a
whole lot of sense to talk about “expected winnings” for a state
without taking into account the current state. Our distribution across
states changes between the two games!




Questions?




