
CS70: Discrete Math and Probability

June 22, 2016



Induction

Principle of Induction.

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0,

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...
and we can conclude

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...
and we can conclude Yes for 2...

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...
and we can conclude Yes for 2.......

1



Induction

Principle of Induction.

P(0)∧ (∀n ∈ N)P(n) =⇒ P(n+1)

And we get...

(∀n ∈ N)P(n).

...Yes for 0, and we can conclude Yes for 1...
and we can conclude Yes for 2.......

1



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 )

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k .

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1)

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2.

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step.

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done?

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere.

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

Predicate, P(n), True for all natural numbers!

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

Predicate, P(n), True for all natural numbers!
Is this a proof?

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

Predicate, P(n), True for all natural numbers!
Is this a proof? Not really. Just an idea, not formal enough to be a proof

2



Gauss and Induction

Child Gauss: (∀n ∈ N)(∑n
i=1 i = n(n+1)

2 ) Proof?

Idea: assume predicate P(n) for n = k . P(k) is ∑k
i=1 i = k(k+1)

2 .

Is predicate, P(n) true for n = k +1?

∑k+1
i=1 i = (∑k

i=1 i)+(k +1) = k(k+1)
2 +k +1 = (k+1)(k+2)

2 .

How about k +2. Same argument starting at k +1 works!
Induction Step. P(k) =⇒ P(k +1).

Are we done? It shows that we can always move to the next step.

Need to start somewhere. P(0) is ∑0
i=0 i = 1 = (0)(0+1)

2 Base Case.

Statement is true for n = 0 P(0) is true
plus inductive step =⇒ true for n = 1 (P(0)∧ (P(0) =⇒ P(1))) =⇒ P(1)

plus inductive step =⇒ true for n = 2 (P(1)∧ (P(1) =⇒ P(2))) =⇒ P(2)

. . .

true for n = k =⇒ true for n = k +1 (P(k)∧ (P(k) =⇒ P(k +1))) =⇒ P(k +1)

. . .

Predicate, P(n), True for all natural numbers!
Is this a proof? Not really. Just an idea, not formal enough to be a proof yet

2



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!

Get to use P(k) to prove P(k +1)!

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!

Get to use P(k) to prove P(k +1)! !

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!

Get to use P(k) to prove P(k +1)! ! !

3



Induction

The canonical way of proving statements of the form

(∀k ∈ N)(P(k))

• For all natural numbers n, 1+2 · · ·n = n(n+1)
2 .

• For all n ∈ N, n3 −n is divisible by 3.

• The sum of the first n odd integers is a perfect square.

The basic form

• Prove P(0). “Base Case”.

• P(k) =⇒ P(k +1)

• Assume P(k), “Induction Hypothesis”
• Prove P(k +1). “Induction Step.”

P(n) true for all natural numbers n!!!

Get to use P(k) to prove P(k +1)! ! ! !

3



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

4



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

• P(0) = “First domino falls”

4



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

• P(0) = “First domino falls”

• (∀k) P(k) =⇒ P(k +1):

4



Notes visualization

Note’s visualization: an infinite sequence of dominos.

Prove they all fall down;

• P(0) = “First domino falls”

• (∀k) P(k) =⇒ P(k +1):
“k th domino falls implies that k +1st domino falls”

4



Climb an infinite ladder?

5



Climb an infinite ladder?

5



Climb an infinite ladder?

P(0)

P(0)

5



Climb an infinite ladder?

P(0)

P(1)

P(0)
∀k ,P(k) =⇒ P(k +1)

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2)

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3)

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(n)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(n)

P(n+1)
P(0)

∀k ,P(k) =⇒ P(k +1)
P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(n)

P(n+1)

P(n+2)

P(n+3)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .

5



Climb an infinite ladder?

P(0)

P(1)

P(2)

P(3)

P(n)

P(n+1)

P(n+2)

P(n+3)

P(0)
∀k ,P(k) =⇒ P(k +1)

P(0) =⇒ P(1) =⇒ P(2) =⇒ P(3) . . .
(∀n ∈ N)P(n)

5



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ?

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

P(k +1)!.

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

P(k +1)!. By principle of induction...

6



Again: Simple induction proof.

Theorem: For all natural numbers n, 0+1+2 · · ·n = n(n+1)
2

Base Case: Does 0 = 0(0+1)
2 ? Yes.

Induction Hypothesis: P(k) is true: 1+ · · ·+k = k(k+1)
2

Induction Step: Show ∀k ≥ 0,P(k) =⇒ P(k +1)

1+ · · ·+k +(k +1) =
k(k +1)

2
+(k +1)

=
k2 +k +2(k +1)

2

=
k2 +3k +2

2

=
(k +1)(k +2)

2

P(k +1)!. By principle of induction...

6



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case:

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0,

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis:

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

=
1
6
(k +1)(2k2 +k +6k +6)

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

=
1
6
(k +1)(2k2 +k +6k +6)

=
1
6
(k +1)(k +2)(2k +3)

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

=
1
6
(k +1)(2k2 +k +6k +6)

=
1
6
(k +1)(k +2)(2k +3)

=
1
6
(k +1)(k +2)(2(k +1)+1)

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

=
1
6
(k +1)(2k2 +k +6k +6)

=
1
6
(k +1)(k +2)(2k +3)

=
1
6
(k +1)(k +2)(2(k +1)+1)

p(k +1) is true.

7



Try it yourself!

For all natural numbers n, 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1)

Define predicate p(n) as 02 +12 +22 · · ·n2 = 1
6 n(n+1)(2n+1) for n ∈ N

Base case: For n = 0, 02 = 1
6 ∗0∗1∗1 = 0,p(0) is true.

Induction hypothesis: assume p(k) is true for some natural number k .

Inductive steps: need to prove p(k) =⇒ p(k +1)

02 +12 +22 · · ·+k2 +(k +1)2 = (02 +12 +22 · · ·+k2)+(k +1)2

=
1
6

k(k +1)(2k +1)+(k +1)2

= (k +1)(
1
6

k(2k +1)+(k +1))

=
1
6
(k +1)(2k2 +k +6k +6)

=
1
6
(k +1)(k +2)(2k +3)

=
1
6
(k +1)(k +2)(2(k +1)+1)

p(k +1) is true.By principle of induction...

7



Homework, Exam

We will use some problems from homework in our exams,

8



Homework, Exam

We will use some problems from homework in our exams,

with some modifications like the question we just saw.

8



Homework, Exam

We will use some problems from homework in our exams,

with some modifications like the question we just saw.

Take homework seriously,

8



Homework, Exam

We will use some problems from homework in our exams,

with some modifications like the question we just saw.

Take homework seriously, and study the solutions carefully after we release them.

8



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof:

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).
=⇒ (k +1)3 − (k +1) is divisible by 3.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).
=⇒ (k +1)3 − (k +1) is divisible by 3.

Thus, (∀k ∈ N)P(k) =⇒ P(k +1)

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).
=⇒ (k +1)3 − (k +1) is divisible by 3.

Thus, (∀k ∈ N)P(k) =⇒ P(k +1)
Thus, theorem holds by induction.

9



Another Induction Proof.

Theorem: For every n ∈ N, n3 −n is divisible by 3. (3|(n3 −n) ).

Proof: By induction.
Base Case: P(0) is “(03)−0” is divisible by 3. Yes!
Induction Hypothesis: k3 −k is divisible by 3.

or k3 −k = 3q for some integer q.
Induction Step: (∀k ∈ N),P(k) =⇒ P(k +1)

(k +1)3 − (k +1) = k3 +3k2 +3k +1− (k +1)
= k3 +3k2 +2k
= (k3 −k)+3k2 +3k Subtract/add k
= 3q+3(k2 +k) Induction Hyp. Factor.
= 3(q+k2 +k) (Un)Distributive + over ×

Or (k +1)3 − (k +1) = 3(q+k2 +k).

(q+k2 +k) is integer (closed under addition and multiplication).
=⇒ (k +1)3 − (k +1) is divisible by 3.

Thus, (∀k ∈ N)P(k) =⇒ P(k +1)
Thus, theorem holds by induction.

9



Four Color Theorem.

Theorem: Any map can be 4-colored so that those regions that share an edge have different colors.

10



Four Color Theorem.

Theorem: Any map can be 4-colored so that those regions that share an edge have different colors.

Not gonna prove it.

10



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

R

B

B

R

B

R

B

B R

R

B

.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

R

B

B

R

B

R

B

B R

R

B

.

Fact: Swapping red and blue gives another valid colors.



Two color theorem: example.

Any map formed by dividing the plane M into regions by drawing straight lines can be colored with
two colors so that those regions share an edge have different colors.

B

R

R

B

R

B

R

R B

B

R

.

Fact: Swapping red and blue gives another valid colors.

11



Two color theorem: proof illustration.

Base Case.



Two color theorem: proof illustration.

R

B
Base Case.



Two color theorem: proof illustration.

R

B

1. Add line.



Two color theorem: proof illustration.

R

B

R

B

1. Add line.
2. Get inherited color for split regions



Two color theorem: proof illustration.

R

B

R

B

switch

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

switch

R

B

B

R

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

R

B

B

R

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

R

B

B

R

R

B

B

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

R

B

B

R

R

B

B

switch

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

B

B

B

R

R

R

R

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

B

B

B

R

R

R

R

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

B

R

R

B

R

B

B R
R

R

B

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

B

R

R

B

R

B

B R
R

R

B

sw
itc

h co
lor

s

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)



Two color theorem: proof illustration.

R

B

B

R

B

R

B

B R
R

B

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

12



Two color theorem: proof illustration.

R

B

B

R

B

R

B

B R
R

B

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

Algorithm gives P(k) =⇒ P(k +1).

12



Two color theorem: proof illustration.

R

B

B

R

B

R

B

B R
R

B

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

Algorithm gives P(k) =⇒ P(k +1).

12



Strenthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1
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Tournament has a cycle of length 3 if at all.

Assume the the smallest cycle is of length k .

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

p1

p2

p3

p4

· · ·

· · ·
· · ·

· · ·

· · ·

pk

“p3 → p1” =⇒ 3 cycle

Contradiction.

“p1 → p3” =⇒ k −1 length cycle!

Contradiction!
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Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.
4. k2 +2k +1 = (k +1)2

... P(k+1)!

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.
4. k2 +2k +1 = (k +1)2

... P(k+1)!

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.
4. k2 +2k +1 = (k +1)2

... P(k+1)!

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.
4. k2 +2k +1 = (k +1)2

... P(k+1)!

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3.
4. k2 +2k +1 = (k +1)2

... P(k+1)!

23



Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is n2.

k th odd number is 2(k −1)+1.

Base Case 1 (1th odd number) is 12.

Induction Hypothesis Sum of first k odds is perfect square a2 = k2.

Induction Step 1. The (k +1)st odd number is 2k +1.
2. Sum of the first k +1 odds is

a2 +2k +1 = k2 +2k +1
3. ???
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Strong Induction and Recursion.

Thm: For every natural number n ≥ 12, n = 4x +5y .
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elif (n==15): return(0,3)

else:

(x’,y’) = find-x-y(n-4)
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Base cases: P(12) , P(13) , P(14) , P(15). Yes.

Strong Induction step:
Recursive call is correct: P(n−4) =⇒ P(n).
n−4 = 4x �+5y � =⇒ n = 4(x �+1)+5(y �)
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