Applications of Polynomials: Secret Sharing
and Erasure Codes

CS70 Summer 2016 - Lecture 7D

Grace Dinh
04 August 2016

UC Berkeley



Counting polynomials
Shamir’s Secret Sharing

Erasure Codes



Counting Polynomials

How many polynomials of degree at most d are there in Zp,?



Counting Polynomials

How many polynomials of degree at most d are there in Zy? m
values for each coefficient, d +1 coefficients, so md+".



Counting Polynomials

How many polynomials of degree at most d are there in Zy? m
values for each coefficient, d +1 coefficients, so md+".

Another way to look at it: polynomial is uniquely determined by d +1
points, each of which can take on m values.



Counting Polynomials

How many polynomials of degree at most d are there in Zy? m
values for each coefficient, d +1 coefficients, so md+".

Another way to look at it: polynomial is uniquely determined by d +1
points, each of which can take on m values.

How many polynomials are there that pass through k points that |
give you (assuming k < d+1)?



Counting Polynomials

How many polynomials of degree at most d are there in Zy? m
values for each coefficient, d +1 coefficients, so md+".

Another way to look at it: polynomial is uniquely determined by d +1
points, each of which can take on m values.

How many polynomials are there that pass through k points that |
give you (assuming k < d+1)? ma+1=k_Why? Polynomial fully
determined by d +1 points. We have k. How we set the remaining
d+1—k fully specifies the polynomial.



Secret Sharing (1/2)

Suppose we are designing nuclear launch protocols for the
government. Want to require multiple people to get the launch codes
(so no one person can launch nukes) but in a nuclear war you can't
guarantee that everyone will be alive when the codes are needed.



Secret Sharing (1/2)

Suppose we are designing nuclear launch protocols for the
government. Want to require multiple people to get the launch codes
(so no one person can launch nukes) but in a nuclear war you can't
guarantee that everyone will be alive when the codes are needed.

Shamir's secret sharing scheme: a way to distribute a secret (e.g.
nuclear launch codes) such that:

1. A group of sufficient size can recover the secret without all of
them needing to be present.

2. No group that is too small to recover the entire secret can
recover any information about the secret without the
cooperation of more people.



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).

2. Pick a degree-k—1 polynomial P such that P(0) =s, i.e.
P(X) = s+ aix+ axx* + ... + ap_x*~", where ay, ...,a,_, are chosen
randomly.



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).

2. Pick a degree-k—1 polynomial P such that P(0) =s, i.e.
P(X) = s+ aix+ axx* + ... + ap_x*~", where ay, ...,a,_, are chosen
randomly.

3. Give P(i) to the ith official.



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).

2. Pick a degree-k—1 polynomial P such that P(0) =s, i.e.
P(X) = s+ aix+ axx* + ... + ap_x*~", where ay, ...,a,_, are chosen
randomly.

3. Give P(i) to the ith official.

In the event that k officials decide to launch nukes, they can get
together, interpolate the polynomial, and get P (and thus P(0)).



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).

2. Pick a degree-k—1 polynomial P such that P(0) =s, i.e.
P(X) = s+ aix+ axx* + ... + ap_x*~", where ay, ...,a,_, are chosen
randomly.

3. Give P(i) to the ith official.

In the event that k officials decide to launch nukes, they can get
together, interpolate the polynomial, and get P (and thus P(0)).

What happens when fewer that k officials go rogue and try to order a
nuclear strike? They have less than k points so they can't gain iny
information about what P(0) is!



Secret Sharing (2/2)

Suppose we have n government officials. We want to make sure at
least k officials approve a nuclear launch before they can get the
launch code s.

1. Pick some prime g > s,n. We will operate in GF(q).

2. Pick a degree-k—1 polynomial P such that P(0) =s, i.e.
P(X) = s+ aix+ axx* + ... + ap_x*~", where ay, ...,a,_, are chosen
randomly.

3. Give P(i) to the ith official.

In the event that k officials decide to launch nukes, they can get
together, interpolate the polynomial, and get P (and thus P(0)).

What happens when fewer that k officials go rogue and try to order a
nuclear strike? They have less than k points so they can't gain iny
information about what P(0) is!To see this: what happens if k—1
officials try to get P? There are g polynomials passing through their
points, one for every possible value of P(0). No new information
gained!



Live Demo



Erasure Codes (1/2)

Polynomial interpolation can also be used to recover data.



Erasure Codes (1/2)

Polynomial interpolation can also be used to recover data.
Same principle as secret sharing!
Packets dropped — dead officials.

Packets you receive — live officials.



Erasure Codes (1/2)

Polynomial interpolation can also be used to recover data.
Same principle as secret sharing!

Packets dropped — dead officials.

Packets you receive — live officials.

You want to recover the original message if you receive enough
information!



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).

Has to be a unique degree-n—1 polynomial passing through n points
in GF(q).



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).

Has to be a unique degree-n—1 polynomial passing through n points
in GF(q).

Define a degree-n —1 polynomial P(x) passing through
(1,m),(2,m3),...,(n,my) in GF(g). Want to send enough information
to reconstruct this polynomial on the other side of the channel.



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).

Has to be a unique degree-n—1 polynomial passing through n points
in GF(q).

Define a degree-n —1 polynomial P(x) passing through
(1,m),(2,m3),...,(n,my) in GF(g). Want to send enough information
to reconstruct this polynomial on the other side of the channel.

Trick: send d extra points too! (n+1,P(n+1)),...,(n+d,P(n+d)).



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).

Has to be a unique degree-n—1 polynomial passing through n points
in GF(q).

Define a degree-n —1 polynomial P(x) passing through
(1,m),(2,m3),...,(n,my) in GF(g). Want to send enough information
to reconstruct this polynomial on the other side of the channel.

Trick: send d extra points too! (n+1,P(n+1)),...,(n+d,P(n+d)).

No matter which packets are dropped we can recover P and find the
original packets!



Erasure Codes (2/2)

Want to send n packets over a lossy channel (each one some number
over GF(q), g prime); call the packets my,m,...,m,. Say the channel
drops d packets (although we don’t know which).

Has to be a unique degree-n—1 polynomial passing through n points
in GF(q).

Define a degree-n —1 polynomial P(x) passing through
(1,m),(2,m3),...,(n,my) in GF(g). Want to send enough information
to reconstruct this polynomial on the other side of the channel.

Trick: send d extra points too! (n+1,P(n+1)),...,(n+d,P(n+d)).

No matter which packets are dropped we can recover P and find the
original packets!

Note: does require that g > n+d, but finding big primes is easy so
it's not normally a problem.



Live Demo



