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Today

Review: Chinese Remainder Theorem and Blum Coin Flipping

Algebraic Structures: Groups, Rings, and Fields

Galois Fields

Polynomials

Applications: Secret Sharing and Erasure Codes
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Motivation

We’ve been talking about manipulating numbers in modular
arithmetic and congruences as in a manner similar to talking about
ordinary numbers.

Can we express turn numbers and congruences in modular
arithmetic into their own “number system”?

Define algebraic structures through axioms that define how they
behave.
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Groups

A group (G,+) is a pair consisting of a set G and a binary operation ·
that satisfies the following axioms:

• Closure: If a,b ∈ G, then a+b ∈ G.
• Associativity: For all a,b,c ∈ G: a+(b+c) = (a+b)+ c.
• Existence of Identity: There exists some element e ∈ G such that
for all a ∈ G, e+a= a.

• Existence of inverse: For all a ∈ G, exists b ∈ G such that
a+b= b+a= e.

Notice that there no commutativity requirement. “·” may be
non-commutative! If it is commutative, we refer to the group as
abelian. Formally, Abelian groups must satisfy requires another
axiom:

• Commutativity: For all a,b ∈ G: a+b= b+a.

Also, note that + doesn’t necessarily have to represent addition in
the normal sense. Elements of G may not even be numbers! 4



Rings and Fields

Start with an Abelian group (R,+). Turn it into a ring by adding
another binary operation, “·” (that it is closed on). In addition to the
Abelian group axioms for (R,+), a ring must satisfy the following:

• Associativity: For all a,b,c ∈ R, (a ·b) ·c= a · (b ·c).
• Multiplicative identity: There exists an element 1 ∈ R such that
for all a ∈ R, 1 ·a= a · 1= a.

• Left and right distributivity: For all a,b,c ∈ R,
a · (b+c) = a ·b+a ·c and (b+c) ·a= b ·a+c ·a.

A ring is commutative if for all a,b ∈ r, a ·b= b ·a.
Add multiplicative inverses to get a field: for all a ̸= 0 ∈ R, exists
a−1 ∈ R such that a ·a−1 = 1.

Examples: With addition and multiplication defined in the usual
sense R, Q, and C are fields. Z is a commutative ring but not a field.
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Galois Fields

How do we apply fields to modular arithmetic?

Let Zn denote the set {0,1,2, . . . ,n− 1} and consider (Zn,+, ·) where
+ and · are defined as standard addition and multiplication
(mod n). It follows immediately from the standard properties of
addition and multiplication that this is a commutative ring.

Is it a field? How do we guarantee that there’s a multiplicative
inverse for each k ∈ Zn?

To be a multiplicative inverse: gcd(k,n) = 1. How do we make sure
that this holds for all k ∈ Zn? Make n prime.

Definition: For prime p, the field (Zp,+, ·), with + and · defined as
modular arithmetic (mod p), is known as the prime field1 of order p,
denoted GF(p).
1Also known as Galois or finite fields for prime p, although those are more general
objects that have different meanings for non-prime p as well.
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Polynomials



Polynomials

Now that we have a framework for modular math (mod some prime):
let’s extend this to polynomials.

We’ll be working with polynomials in prime fields.

A polynomial of degree d over some commutative ring R is an
expression of the form

p(x) = a0+a1x+a2x2+ · · ·+adxd

where the coefficients ai are elements of R.

A polynomial is said to contain a point (x,y) if p(x) = y.
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Specifying a Polynomial

How do we describe polynomials?

One way: just give me the coefficients. a0,a1, . . . ,ad. d+ 1 numbers.

Another way to think about it: specify polynomials by points that it
contains. Obviously if we specify every single point that it does (in a
finite ring there are only finitely many points, so we can list them all)
that fully specifies the polynomial. Can we do it in fewer points?

What’s a polynomial of degree 0? Just a constant function. p(x) = a0.
How many points to I need to specify a constant function? Just 1.
(anything,a0).

What about a polynomial of degree 1? It’s a line. How many points
do I need to specify a line? 2.

Beginning to see a pattern here? How many points do I need to
specify a polynomial of degree 2? 3. Degree d? d+ 1.
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Specifying Polynomials with Points

If I have some degree-d polynomial, and I give you d+ 1 points for it,
how do you get the coefficients back from the points?

One way to do it: try plugging in the points and solving for the
coefficients. Say I give you (x1,y1),(x2,y,), . . . ,(xd+1,yd+1).

y1 = a0+a1x1+a2x21 + · · ·+adxd1
...

yd+1 = a0+a1xd+1+a2x2d+1+ · · ·+adxdd+1

Or in matrix form:


1 x1 x21 . . . xd1
1 x2 x22 . . . xd2
1 x3 x23 . . . xd3
...

...
... . . . ...

1 xd+1 x2d+1 . . . xdd+1







a0
a1
a2
...
ad



=




y1
y2
y3
...

yd+1




(This matrix is called the Vandermonde matrix.) 9



Lagrange Interpolation (1/2)

How do we know the system of equations on the previous slide has a
solution? Unfortunately, we don’t. (If you know linear algebra you
can prove directly through determinants or through linear
independence that the Vandermonde matrix is nonsingular, but
that’s beyond the scope of this course.)

Let’s try another way to get the polynomial: set the value at each
x-coordinate, one at a time.

Notice that (x− x2)(x− x3) . . .(x− xd+1) is zero at x2,x3, . . . ,xd+1 (but
not at x1). What if we divide by its value at x= x1 and then multiply
by y1?

∆1(x) := y1
(x− x2)(x− x3) . . .(x− xd+1)

(x1− x2)(x1− x3) . . .(x1− xd+1)

Value at x1? y1. Value at x2, . . . ,xd+1? 0. General idea behind
interpolation: make these polynomials for all i and add them
together. 10



Lagrange Interpolation (2/2)

Generally, define:

∆i(x) :=
∏j≠i(x− xj)
∏j≠i(xi− xj)

From construction we know that ∆i(xi) = 1 and ∆i(xj) = 0 for j ̸= i.
Therefore,

p(x) =
d+1
∑
i=1
yi∆i(x)

must contain (x1,y1),(x2,y2), . . . ,(xd+1,yd+1). Degree of this
polynomial? Just number of terms in each product, d. So we have a
polynomial of degree d that passes through all our points.

When does interpolation work? Notice that we need division also.
Polynomial must be over a field in order to guarantee that
interpolation works.
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Uniqueness?

Now we have a polynomial passing through a collection of d+ 1
points. Is it the only polynomial passing through these points? Or:
we know the system given by the Vandermonde matrix has a
solution. Is it a unique solution or is the system underdetermined?

Two theorems:

Theorem 1: A nonzero polynomial of degree d has at most d roots.

Theorem 2: Given d+ 1 points (x1,y1), ...,(xd+1,yd+1), with x1, ...,xd+1
distinct, there is a unique polynomial p(x) of degree at most d such
that p(xi) = yi for all i.

We already know there is such a polynomial (we constructed one).
Remains to show uniqueness.
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Proof of Theorem 2

Let’s just assume Theorem 1 for now and do 2 first to show
uniqueness.

Suppose that I have two polynomials p(x), q(x) with degree at most d
that both contain (x1,y1), ...,(xd+1,yd+1). Consider r(x) = p(x)−q(x). It
suffices to show that r(x) = 0 (i.e. p(x) = q(x)).

Notice that r(x) = 0 at x1,x2, ...,xd+1 (d+ 1 points) since p(x) and q(x)
take the same values there.

Since r(x) is the sum of two degree-at-most-d polynomials, its
degree must also be at most d. As shown above it has at least d+ 1
points where it’s zero, so it has at least d+ 1 roots. But we know that
a nonzero polynomial of degree d has at most d roots. That means
r(x) = 0, as desired.
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Polynomial Division

Given a degree-d polynomial f(x) and a polynomial g(x) of degree at
most d, we can use long division to write f(x) = g(x)q(x)+ r(x) for
some polynomials q(x), r(x) such that the degree of r(x) is strictly
smaller than the degree of f(x). Method: same as elementary-school
long division for numbers!

Example: divide x3−2x2−4 by x−3.

x2+ x +3
x−3)x3−2x2+0x−4

x3− 3x2
+x2+0x
+x2−3x

+3x−4
+3x−9

+5
So x3−2x2−4= (x−3)(x2+ x+3)+5. 14



Proof of Theorem 1 (1/3)

Lemma 1: Suppose a is a root of some degree-d polynomial p(x).
Then p(x) = (x−a)q(x) for some degree-d− 1 polynomial q(x).

Proof of Lemma: Divide p(x) by (x−a) using polynomial long division:
p(x) = (x−a)q(x)+ r(x). The degree of r(x) is necessarily smaller
than that of x−a, so it’s a constant, i.e. r(x) = c for some constant c.
Substitute x= a: p(a) = (a−a)q(a)+ c= 0. But we know that a is a
root of p, so p(a) = 0. So c= 0, i.e. p(x) = (x−a)q(x), as desired.
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Proof of Theorem 1 (2/3)

Lemma 2: If a degree-d polynomial p(x) has d distinct roots a1, ...,ad,
then it can be written as p(x) = c(x−a1)...(x−ad) for some constant
c.

Proof of Lemma 2: Idea: just keep dividing by (x−ai).Formally:
proceed by induction on d.

For the base case, consider a degree-1 polynomial with a single root
a1. It immediately follows from Lemma 1 that it must be expressible
as c(x−a1).
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Proof of Theorem 1 (3/3)

Now suppose for induction that the lemma holds for some d. It
suffices to show that we can express a degree-d+ 1 polynomial p(x)
with d+ 1 roots a1, ...,ad+1 as p(x) = c(x−a1)...(x−ad+1).

Apply Lemma 1: p(x) = (x−ad+1)q(x) for some degree-d polynomial
q(x).

Roots of q(x)? a1, ...,ad. Why? p(x) is zero at those points, and
x−ad+1 isn’t, so q(x) has to be. q(x): d distinct roots, degree d. So
by inductive hypothesis, q(x) = c(x−a1)...(x−ad).
So p(x) = c(x−a1)...(x−ad)(x−ad+1) as desired.

It immediately follows that a nonzero polynomial of degree d has at
most d roots. Why? Suppose for contradiction that it has more than
d. Take first d roots and write the polynomial as c(x−a1)...(x−ad).
Plug in the d+ 1st root, ad+1. Since it’s distinct from a1, ...,ad this
polynomial must be nonzero, contradicting our assertion that ad+1
was a root. Therefore, we’ve proven Theorem 1. 17



Up next...

Counting polynomials.

Applications: Shamir’s secret sharing and error-correcting codes.

Polynomial identity testing and the Schwartz-Zippel lemma
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