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Amazon my credit card number.

2



Motivation

Let’s say I’m trying to buy something on Amazon. Need to send
Amazon my credit card number.

Problem: what if somebody (let’s say NSA) is snooping on my
network connection?

2



Motivation

Let’s say I’m trying to buy something on Amazon. Need to send
Amazon my credit card number.

Problem: what if somebody (let’s say NSA) is snooping on my
network connection?

Goal: transmit my credit card number to Amazon without any
eavesdroppers knowing what they are.
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Private Key Crypto: One-Time Pad

Very simple way to encrypt messages.

Recall the truth table of xor (denoted ⊕): A⊕ B = 1 if and only if
exactly one of A, B are 1.

Simple encryption scheme (”one time pad”): given a plaintext we
want to encrypt (e.g. credit card number, represented as a bitstring)
and a key of equal length, xor each bit of the plaintext with the
corresponding bit of the key to get a ciphertext.

How do we decrypt? Notice that x⊕ y⊕ x = y⊕ x⊕ x = y⊕ 0 = y. So:
just xor the ciphertext with the key, bitwise, to get plaintext back.

Example: let’s say my credit card has a bit representation of 01101.
Pick key 11001. Ciphertext is 10100. Easy to verify that bitwise xor of
10100 and 11001 is 01101.
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Why is OTP secure?

Suppose I have the ciphertext c, but not the key or the plaintext. Can
I find out anything about the plaintext?No!

For every possible plaintext p (of the same length as c), there exists a
key k such that c = p⊕ k. Why? Just let k = c⊕ p.

What’s wrong with OTP?

• Need a really long key. Same length as input! Fine for credit card
numbers, maybe not so fine for a few TB of top-secret blueprints
for your next supervillain base...

• Can’t reuse key twice without leaking info. Let’s say I send p1 ⊕ k
and p2 ⊕ k. Then NSA can easily figure out what p1 ⊕ p2 is!
Information leaked!

• Needs a key to be shared before the transmission is done. If I
need to walk into Amazon HQ to give them a secret key before
sending them my CC number, why not just go to a store? 4



Addressing OTP Shortcomings

Long keys can be addressed with ”pseudorandom generators” that
take short random strings and turn them into longer strings that
”look random”.
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Addressing OTP Shortcomings

Long keys can be addressed with ”pseudorandom generators” that
take short random strings and turn them into longer strings that
”look random”. Beyond the scope of this course (take CS276).

Address the security concerns with public key crypto (now).

Big idea: Amazon gives everyone a mathematical safe that they can
put stuff into, but can’t unlock.
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RSA Algorithm

Formally: Amazon broadcasts a public key that anyone can use to
encrypt data with. Amazon has (and keeps secret) a private key that
they can use to decrypt data that’s been encrypted with the public
key.
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RSA Algorithm

Formally: Amazon broadcasts a public key that anyone can use to
encrypt data with. Amazon has (and keeps secret) a private key that
they can use to decrypt data that’s been encrypted with the public
key.

Key generation: Amazon picks two large primes, p and q, and lets
N = pq. It also chooses some e relatively prime to (p− 1)(q− 1)
(normally small, say, 3), and then computes d = e−1

mod (p− 1)(q− 1).

Puts N = pq and e on their website. Locks up d deep in the bowels of
corporate HQ.

Encrypt: Given plaintext x (say, a credit card number), Grace
computes the ciphertext c = E(x) = mod(xe,N) and sends it to
Amazon (over an open channel that NSA may be watching).

Decrypt: Amazon computes D(c) = mod(cd,N). We’ll show (next
slide) this actually gives the plaintext x back. 6



Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.

7



Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.
Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0, 1, ...n− 1}.

7



Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.
Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0, 1, ...n− 1}.
Consider the exponent ed. We kow that ed ≡ 1 mod (p− 1)(q− 1) by
definition, so ed = 1+ k(p− 1)(q− 1) for some integer k.

7



Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.
Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0, 1, ...n− 1}.
Consider the exponent ed. We kow that ed ≡ 1 mod (p− 1)(q− 1) by
definition, so ed = 1+ k(p− 1)(q− 1) for some integer k. Therefore,

xed − x = x1+k(p−1)(q−1) − x = x(xk(p−1)(q−1) − 1) .

7



Correctness of RSA

Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.
Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0, 1, ...n− 1}.
Consider the exponent ed. We kow that ed ≡ 1 mod (p− 1)(q− 1) by
definition, so ed = 1+ k(p− 1)(q− 1) for some integer k. Therefore,

xed − x = x1+k(p−1)(q−1) − x = x(xk(p−1)(q−1) − 1) .

Suffices to show that this expression is 0 mod N for all x, i.e. that it’s
a multiple of both p and q. We will show it’s a multiple of p.

7
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Theorem: For the encryption/decryption protocol on the previous
slide, D(E(x)) = x (mod N) for all x ∈ {0, 1, ...n− 1}.
Proof: It suffices to show: (xe)d ≡ x (mod n) for all x ∈ {0, 1, ...n− 1}.
Consider the exponent ed. We kow that ed ≡ 1 mod (p− 1)(q− 1) by
definition, so ed = 1+ k(p− 1)(q− 1) for some integer k. Therefore,

xed − x = x1+k(p−1)(q−1) − x = x(xk(p−1)(q−1) − 1) .

Suffices to show that this expression is 0 mod N for all x, i.e. that it’s
a multiple of both p and q. We will show it’s a multiple of p.

• Case 1: p divides x. Then obviously it also divides
x(xk(p−1)(q−1) − 1), as desired.

• Case 2: p doesn’t divide x. Then xk(p−1)(q−1) = (xp−1)k(q−1).
Applying Fermat’s little theorem, xp−1 ≡ 1 (mod p). So
xk(p−1)(q−1) − 1 ≡ 1k(q−1) − 1 ≡ 0 (mod p), so x(xk(p−1)(q−1) − 1)
must be a multiple of p.

Argument for q is exactly the same. Therefore p|(xed − x). 7



On the Security of RSA

Why is RSA secure? Even without the private key, we have enough
information to decrypt anything we see (we could just take the
public key, encrypt every possible string representable as a number
under N, and see which one matches the ciphertext).
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On the Security of RSA

Why is RSA secure? Even without the private key, we have enough
information to decrypt anything we see (we could just take the
public key, encrypt every possible string representable as a number
under N, and see which one matches the ciphertext).

The security RSA, like all almost all encryption schemes, relies on
hardness assumptions. We need to assume something is hard in
order to show that decrypting something, or even getting some
information about the plaintext, even with full information, is hard.
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Message Indistinguishability*

How do we formalize this notion of ”hard to get information about
the plaintext”?
Quasi-formally: under some hardness assumptions, this must hold
for all pairs of strings m(1), m(0): for any probabilistically polynomial
time (”PPT”) algorithm A that knows the length of the strings and the
public key, the probability that A returns 1 given the public key and
the encryption of m(1) must be ”extremely close” to the probability
that it returns 1 on the encryption of m(0).
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plaintexts.
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the plaintext”?
Quasi-formally: under some hardness assumptions, this must hold
for all pairs of strings m(1), m(0): for any probabilistically polynomial
time (”PPT”) algorithm A that knows the length of the strings and the
public key, the probability that A returns 1 given the public key and
the encryption of m(1) must be ”extremely close” to the probability
that it returns 1 on the encryption of m(0). Formally:���Pr[AE(1

k,PK)(1k, PK, E(1k, PK,m(1)
k ) = 1]− Pr[AE(1

k,PK)(1k, PK, E(1k, PK,m(0)
k ) = 1]

���

is “negligible” in k.

Intuitively? There is no algorithm (even if we allow the algorithm
access to the public key) that runs in a reasonable amount of time
that can distinguish between the ciphertexts for two different
plaintexts. “Message indistinguishability under chosen plaintext
attack”.
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What hardness assumptions are we making for RSA?

“Given N, e, c = xe (mod N), there is no efficient algorithm for
determining x.”

How would the NSA guess x?

• Brute force: try encrypting every possible string x. There are too
many values of x - 2|x|. Can’t do this efficiently.

• Factoring: Try determining d by factoring N into p and q, which
would allow NSA to compute d the same way Amazon did.
Factoring large numbers is considered impossible to do
efficiently.

• Direct computation of (p− 1)(q− 1). Reduces to factoring. Why?
If you compute (p− 1)(q− 1) = pq− p− q+ 1, you now know
what p+ q and pq are. Trivial to solve for p and q from here.

Security of breaking RSA requires on hardness of factoring large
integers. 10
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RSA also relies on the ability to find large primes p and q. How do we
do that?

Prime number theorem: Let π(x) denote the number of prime
numbers less than or equal to x. Then as x goes to infinity, π(x)
converges to x/ ln x.

Proof: Many of them, but all of them require math far beyond the
scope of this course.

Main takeaway: primes aren’t too uncommon. If we select a few
hundred 512-bit numbers, there will probably be a prime among
them.

Problem: how do we figure out if something’s a prime?

11



A Simple Primality Test

Recall Fermat’s little theorem: if p is prime and 1 ≤ a ≤ p, then
ap−1 ≡ 1 (mod p).
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Suppose k is composite. Call a such that ak−1 ̸≡ 1 (mod k) “Fermat
witnesses” and a such that ak−1 ≡ 1 (mod k) “Fermat liars”. Suppose
we have one Fermat witness. There must be at least one Fermat
witness for each Fermat liar. Why?

Let’s say a is a Fermat witness relatively prime to k and b1, ...,bl are a
Fermat liar. Then

(abi)k−1 ≡ ak−1bk−1
i ≡ ak−11 ̸≡ 1 (mod k) .

So we have a list of l Fermat witnesses which are distinct (since we
can multiply by multiplicative inverse of a to recover distinct bs.

If we pick random a and k is composite: probability that we say
“prime” is ak−1 ̸≡ 1 (mod k) is at least 1/2. Pick n random numbers to
reduce false prime reporting rate to 1/2n. 12
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What if we can’t assume that there is a Fermat witness? Carmichael
numbers! Composites where all a for which gcd(a, k) = 1 are Fermat
liars.

Carmichael numbers are a good deal rarer than primes but can still
be a problem. There are better primality tests that extend Fermat’s
to deal with Carmichael numbers: Miller-Rabin, Bailie-PSW,
Solovay-Strassen. Often Fermat’s primality test is used to filter out
obvious non-primes before one of these other (slower) tests is used.
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Can you find big primes without randomness? Yes!

AKS primality test [Agrawal–Kayal–Saxena ’02]: you can find primes
“efficiently” (roughly # of bits to the sixth power) without using
randomness.

Fundamental question in computer science: how much additional
computational power does randomness give you? Can you do things
with randomness efficiently that you can’t without randomness?

Major open problem! There are problems that we know how to solve
with randomness, but we don’t know how to solve deterministically.
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The Chinese Remainder Theorem,
Euler’s Criterion, and an
Application to Flipping Coins



Simultaneous Congruences

Theorem: Suppose gcd(m,n) = 1. Then the two equations x ≡ a
(mod m) and x ≡ b (mod n) have a unique solution mod mn.
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Theorem: Suppose gcd(m,n) = 1. Then the two equations x ≡ a
(mod m) and x ≡ b (mod n) have a unique solution mod mn.

Proof: To satisfy the first equation: we must have x = a+mt for
some integer t.

To satisfy the second equation we must have x ≡ a+mt ≡ b
(mod n), or mt ≡ b− a (mod n).

Since gcd(m,n) = 1, m has a multiplicative inverse mod n, so we can
determine t uniquely mod n. Let’s say t ≡ c (mod n). So there exists
integer k such that t = c+ nk.

So x = a+m(c+ nk) = (a+mc) +mnk, i.e. x ≡ a+mc (mod mn);
this is a unique solution to the equations mod mn.
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Chinese Remainder Theorem

We can generalize this to multiple primes!

Chinese Remainder Theorem: Let m1, ...,mk be relatively prime
numbers. Then the k equations x ≡ a1 (mod m1), ..., x ≡ ak (mod mk)

have a unique solution mod m1m2...mk.
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We can generalize this to multiple primes!

Chinese Remainder Theorem: Let m1, ...,mk be relatively prime
numbers. Then the k equations x ≡ a1 (mod m1), ..., x ≡ ak (mod mk)

have a unique solution mod m1m2...mk.

Proof: by induction on k.

For the base case, let k = 2. This is just the theorem on the previous
page.

Now suppose for induction that the theorem holds for up to k
equations. We wish to show that it holds for k+ 1 equavions.

Remove the k+ 1st equation. We have k equations, which (by
inductive hypothesis) have a unique solution mod m1m2...mk, i.e.
x = t (mod m1m2...mk).

Add the last equation back. Since mk+1 is relatively prime to each of
m1, ...,mk, it is relatively prime to m1m2...mk. So by the previous
theorem, there is a unique solution mod (m1m2...mk)mk+1. 16



Flipping Coins Remotely

Suppose Alex and Grace want flip a coin, but they’re a country apart.
Alex bets on heads and Grace bets on tails. How do they flip a coin
fairly?
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Flipping Coins Remotely

Suppose Alex and Grace want flip a coin, but they’re a country apart.
Alex bets on heads and Grace bets on tails. How do they flip a coin
fairly?

Problem: suppose neither side trusts the other to be honest.

Grace: “I flipped a coin and got tails.” Alex: “You’re just saying that
because you want tails.”

How do you do this in a way that doesn’t require trust on both sides?

Number theory to the rescue!
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Square Roots in Modular Arithmetic

Theorem (Euler’s Criterion): Suppose p is an odd prime and a is
some integer relatively prime to p. Then a(p−1)/2 is 1 (mod p) if and
only if there exists some integer x such that a ≡ x2 (mod p) and −1
otherwise.
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Only if direction: more complicated, but we won’t use (or prove) it
here.
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Theorem (Euler’s Criterion): Suppose p is an odd prime and a is
some integer relatively prime to p. Then a(p−1)/2 is 1 (mod p) if and
only if there exists some integer x such that a ≡ x2 (mod p) and −1
otherwise.

Proof: If direction:

a(p−1)/2 = (x2)(p−1)/2 = xp−1 ≡ 1 (mod p)

by Fermat’s little theorem.

Only if direction: more complicated, but we won’t use (or prove) it
here.

Notice that if p ≡ 3 (mod 4), then we can find square roots easily. In
fact, if the solutions to x2 ≡ a (mod p) are given by x ≡ ±a(p+1)/4
(mod p). Why?

(±a(p+1)/4)2 ≡ a(p+1)/2 ≡ a(p−1)/2a ≡ 1a ≡ a (mod p)
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Square roots mod pq

Suppose x2 ≡ a (mod pq). Then we must have x2 ≡ a (mod p) and
x2 ≡ a (mod q).
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Square roots mod pq

Suppose x2 ≡ a (mod pq). Then we must have x2 ≡ a (mod p) and
x2 ≡ a (mod q).

The first congruence gives us x ≡ ±x1 (mod p); the second gives us
x ≡ ±x2 (mod q).

Four sets of equations (choose a sign for the p, and the q.)

One unique solution to each set of equations by the Chinese
remainder theorem.

Four square roots mod pq!

Combine sqare root formula on previous slide for single prime
congruent to 3 (mod 4) with trick here gives us an easy way to
compute square roots of numbers mod pq where p,q are congruent
to 3 (mod 4).

Products of distinct primes both congruent to 3 (mod 4) are called
“Blum integers”.
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Blum’s Coin-Flipping Scheme

Here’s how to flip a coin over the telephone [Blum-’82]:

1. Alex chooses distinct primes p, q congruent to 3 (mod 4), and
computes n = pq. He sends n (but not p and q) to Grace.
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Blum’s Coin-Flipping Scheme

Here’s how to flip a coin over the telephone [Blum-’82]:

1. Alex chooses distinct primes p, q congruent to 3 (mod 4), and
computes n = pq. He sends n (but not p and q) to Grace.

2. Grace chooses x ∈ (0,n) relatively prime to n and sends a = x2
(mod n) to Alex.

3. Alex, armed with knowledge of p, q, computes the square roots
±x,±y of a, mod n, and sends one to Grace.

4. If Grace got ±x, then she says Alex guessed correctly. Otherwise,
if she gets ±y, she can factor n and use that to prove that she
won.
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Blum’s Coin-Flipping Scheme: Analysis

Alex has no idea whether Grace chose x or y, so he has a 1/2 chance
of picking x.
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If Grace got ±y: she now has two different square roots of a (mod n).
Now she can use this to factor n: since x2 ≡ a ≡ y2 (mod n) (with x, y
distinct), pq|(x+ y)(x− y), so each prime divides either (x+ y) or
(x− y) but not both. So gcd(x+ y,n) and gcd(x− y,n) provide the
two prime factors. All Grace has to do is compute
x2 − y2 = (x+ y)(x− y) and run EGCD twice!
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If Grace got ±x: she’s learned nothing, so she can’t factor n any
better than brute force (which is hard).
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Alex has no idea whether Grace chose x or y, so he has a 1/2 chance
of picking x.

If Grace got ±y: she now has two different square roots of a (mod n).
Now she can use this to factor n: since x2 ≡ a ≡ y2 (mod n) (with x, y
distinct), pq|(x+ y)(x− y), so each prime divides either (x+ y) or
(x− y) but not both. So gcd(x+ y,n) and gcd(x− y,n) provide the
two prime factors. All Grace has to do is compute
x2 − y2 = (x+ y)(x− y) and run EGCD twice!

If Grace got ±x: she’s learned nothing, so she can’t factor n any
better than brute force (which is hard).

After the game is over each side can verify the other’s honesty: Grace
asks Alex for the factors p,q to make sure they’re Blum integers and
check that they’re primes.
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Questions?
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