
Modular Arithmetic
CS70 Summer 2016 - Lecture 7A

Grace Dinh
01 August 2016

UC Berkeley

Announcements

Midterm 2 scores out.

Homework 7 is out.

1

Announcements

Midterm 2 scores out.

Homework 7 is out. Longer, but due next Wednesday before class, not
next Monday.

There will be no homework 8.

1

Agenda

Some basic number theory:
• Modular arithmetic
• GCD, Euclidean algorithm, and
multiplicative inverses

• Exponentiation in modular
arithmetic

Mathematics is the queen of the
sciences and number theory is the
queen of mathematics. -Gauss

2

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours?

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours?

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours?

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00!

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12× 8+ 5.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12× 8+ 5.

5 is the same as 101 for a 12 hour clock system.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12× 8+ 5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12× 8+ 5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12, 1, . . . , 11}

3

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.
What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
Actually 4:00.
16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
101 = 12× 8+ 5.

5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12, 1, . . . , 11}
(Almost remainder, except for 12 and 0 are equivalent.)

3

Congruences

x is congruent to y modulo m, denoted “x ≡ y (mod m)”...

• if and only if (x− y) is divisible by m (denoted m|(x− y)).
• if and only if x and y have the same remainder w.r.t. m.
• x = y+ km for some integer k.

(these definitions are equivalent).

4

Congruences

x is congruent to y modulo m, denoted “x ≡ y (mod m)”...

• if and only if (x− y) is divisible by m (denoted m|(x− y)).
• if and only if x and y have the same remainder w.r.t. m.
• x = y+ km for some integer k.

(these definitions are equivalent).

Congruence partitions the integers into equivalence classes
(”congruence classes”). For instance, here are equivalence classes
mod 7: {. . . ,−7, 0, 7, 14, . . .}

4

Congruences

x is congruent to y modulo m, denoted “x ≡ y (mod m)”...

• if and only if (x− y) is divisible by m (denoted m|(x− y)).
• if and only if x and y have the same remainder w.r.t. m.
• x = y+ km for some integer k.

(these definitions are equivalent).

Congruence partitions the integers into equivalence classes
(”congruence classes”). For instance, here are equivalence classes
mod 7: {. . . ,−7, 0, 7, 14, . . .} {. . . ,−6, 1, 8, 15, . . .}

4

Modular Arithmetic

Theorem: If a ≡ c (mod m) and b ≡ d (mod m), then a+ b ≡ c+ d
(mod m) and a · b = c · d (mod m).

5

Modular Arithmetic

Theorem: If a ≡ c (mod m) and b ≡ d (mod m), then a+ b ≡ c+ d
(mod m) and a · b = c · d (mod m).

Proof: Addition: (a+ b)− (c+ d) = (a− c) + (b− d). Since a ≡ c
(mod m) the first term is divisible by m, likewise for the second term.
Therefore the entire expression is divisible by m, so a+ b ≡ c+ d
(mod m).

5

Modular Arithmetic

Theorem: If a ≡ c (mod m) and b ≡ d (mod m), then a+ b ≡ c+ d
(mod m) and a · b = c · d (mod m).

Proof: Addition: (a+ b)− (c+ d) = (a− c) + (b− d). Since a ≡ c
(mod m) the first term is divisible by m, likewise for the second term.
Therefore the entire expression is divisible by m, so a+ b ≡ c+ d
(mod m).

Multiplication: Let a = k1m+ c and b = k2m+ d. Then

ab = (k1m+ c)(k2m+ d) = (k1k2m+ k1d+ k2c)m+ cd

so ab ≡ cd (mod m).

5

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

6

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

What is division? Multiplication by a multiplicative inverse.
x/y = x(1/y).

6

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

What is division? Multiplication by a multiplicative inverse.
x/y = x(1/y).

Formally, a multiplicative inverse of x is a number y such that xy = 1,
the multiplicative identity.

6

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

What is division? Multiplication by a multiplicative inverse.
x/y = x(1/y).

Formally, a multiplicative inverse of x is a number y such that xy = 1,
the multiplicative identity.

Is there a concept of multiplicative inverse in modular arithemtic?

6

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

What is division? Multiplication by a multiplicative inverse.
x/y = x(1/y).

Formally, a multiplicative inverse of x is a number y such that xy = 1,
the multiplicative identity.

Is there a concept of multiplicative inverse in modular arithemtic?

When is there a solution to the equation xy = 1+ km?

6

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x,m), is 1, then
x has a multiplicative inverse modulo m.

7

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x,m), is 1, then
x has a multiplicative inverse modulo m.

Proof: It suffices to show: all elements of S = {0x, 1x, . . . , (m− 1)x}
are distinct mod m.

7

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x,m), is 1, then
x has a multiplicative inverse modulo m.

Proof: It suffices to show: all elements of S = {0x, 1x, . . . , (m− 1)x}
are distinct mod m. Why? Pigeonhole principle. All distinct means
that one of them has to correspond to 1 mod m.

7

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x,m), is 1, then
x has a multiplicative inverse modulo m.

Proof: It suffices to show: all elements of S = {0x, 1x, . . . , (m− 1)x}
are distinct mod m. Why? Pigeonhole principle. All distinct means
that one of them has to correspond to 1 mod m.

Suppose for contradiction that they are not distinct. Then there exist
a,b in {0, ...,m− 1} such that ax, bx are in the same congruence
class mod m, i.e. (a− b)x = km for some integer k.

7

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x,m), is 1, then
x has a multiplicative inverse modulo m.

Proof: It suffices to show: all elements of S = {0x, 1x, . . . , (m− 1)x}
are distinct mod m. Why? Pigeonhole principle. All distinct means
that one of them has to correspond to 1 mod m.

Suppose for contradiction that they are not distinct. Then there exist
a,b in {0, ...,m− 1} such that ax, bx are in the same congruence
class mod m, i.e. (a− b)x = km for some integer k.

Since gcd(x,m) = 1, we must have that m|(a− b), which implies that
a− b ≥ m. But a,b ∈ {0, 1, . . . ,m− 1}, so this is impossible.
Contradiction.

7

Finding GCD

How do we find GCD of x,m?

8

Finding GCD

How do we find GCD of x,m?

Naive approach: try every single number in [1,min(x,m)] and see if it
divides x and m both. Keep the biggest number that does.

8

Finding GCD

How do we find GCD of x,m?

Naive approach: try every single number in [1,min(x,m)] and see if it
divides x and m both. Keep the biggest number that does.

Obviously works, but how long does that take?

8

Finding GCD

How do we find GCD of x,m?

Naive approach: try every single number in [1,min(x,m)] and see if it
divides x and m both. Keep the biggest number that does.

Obviously works, but how long does that take?

I need min(x,m) divisions. For 64-bit integers, that means up to
264 = 18446744073709551616 divisions - assuming one division per
nanosecond (1 GHz), that’s about 585 years to compute a single gcd :(

8

Euclid to the Rescue

Can we do better?

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

Proof: Write x = k1d and y = k2d for some integers k1, k2 (we know
this is possible because d|x and d|y). Then x+ ay = (k1 + ak2)d.

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

Proof: Write x = k1d and y = k2d for some integers k1, k2 (we know
this is possible because d|x and d|y). Then x+ ay = (k1 + ak2)d.

Theorem: gcd(x, y) = gcd(x, y+ ax) for all integers a.

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

Proof: Write x = k1d and y = k2d for some integers k1, k2 (we know
this is possible because d|x and d|y). Then x+ ay = (k1 + ak2)d.

Theorem: gcd(x, y) = gcd(x, y+ ax) for all integers a.

Proof: Suppose k divides both x and y. Then by the lemma, it divides
y+ ax as well.

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

Proof: Write x = k1d and y = k2d for some integers k1, k2 (we know
this is possible because d|x and d|y). Then x+ ay = (k1 + ak2)d.

Theorem: gcd(x, y) = gcd(x, y+ ax) for all integers a.

Proof: Suppose k divides both x and y. Then by the lemma, it divides
y+ ax as well.

Now suppose k divides both x and y+ ax. Then again by lemma, it
must divide y+ ax− ax = y.

9

Euclid to the Rescue

Can we do better?

Lemma: Suppose d|x and d|y. Then d|(x+ ay) for all integers a.

Proof: Write x = k1d and y = k2d for some integers k1, k2 (we know
this is possible because d|x and d|y). Then x+ ay = (k1 + ak2)d.

Theorem: gcd(x, y) = gcd(x, y+ ax) for all integers a.

Proof: Suppose k divides both x and y. Then by the lemma, it divides
y+ ax as well.

Now suppose k divides both x and y+ ax. Then again by lemma, it
must divide y+ ax− ax = y.

Therefore, the set of common divisors of x, y is the same as the set of
divisors of x, y+ ax which means that the gcd must be the same as
well.

9

The Euclidean Algorithm

This leads to an algorithm for computing the gcd of x and y
(assuming x ≥ y ≥ 0):

1. If y is zero, just return x.

10

The Euclidean Algorithm

This leads to an algorithm for computing the gcd of x and y
(assuming x ≥ y ≥ 0):

1. If y is zero, just return x.
2. Otherwise, let x′ = x− y

⌊
x
y

⌋
, and apply the algorithm recursively

to find the gcd(y, x′); this is also gcd(x, y).

(⌊k⌋ is the smallest integer less than or equal to x)

10

The Euclidean Algorithm

This leads to an algorithm for computing the gcd of x and y
(assuming x ≥ y ≥ 0):

1. If y is zero, just return x.
2. Otherwise, let x′ = x− y

⌊
x
y

⌋
, and apply the algorithm recursively

to find the gcd(y, x′); this is also gcd(x, y).

(⌊k⌋ is the smallest integer less than or equal to x)

By the theorem on the previous slide this is guaranteed to give the
right result.

10

The Euclidean Algorithm

This leads to an algorithm for computing the gcd of x and y
(assuming x ≥ y ≥ 0):

1. If y is zero, just return x.
2. Otherwise, let x′ = x− y

⌊
x
y

⌋
, and apply the algorithm recursively

to find the gcd(y, x′); this is also gcd(x, y).

(⌊k⌋ is the smallest integer less than or equal to x)

By the theorem on the previous slide this is guaranteed to give the
right result.

How long does it take to run? O(log y) iterations. Proof: not today.

A lot faster than brute force!

10

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

11

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a,b such that
ax+ by = gcd(x, y).

11

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a,b such that
ax+ by = gcd(x, y).

How do we find the multiplicative inverse mod m? If gcd(x,m) = 1,
then we can find a,b such that ax+ bm = 1.

11

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a,b such that
ax+ by = gcd(x, y).

How do we find the multiplicative inverse mod m? If gcd(x,m) = 1,
then we can find a,b such that ax+ bm = 1. Equivalently:
ax = 1− bm ≡ 1 (mod m).

11

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a,b such that
ax+ by = gcd(x, y).

How do we find the multiplicative inverse mod m? If gcd(x,m) = 1,
then we can find a,b such that ax+ bm = 1. Equivalently:
ax = 1− bm ≡ 1 (mod m). So a = x−1 (mod m).

11

Finding the Inverse with EGCD

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a,b such that
ax+ by = gcd(x, y).

How do we find the multiplicative inverse mod m? If gcd(x,m) = 1,
then we can find a,b such that ax+ bm = 1. Equivalently:
ax = 1− bm ≡ 1 (mod m). So a = x−1 (mod m).

How do we find a, b?

11

EGCD: Motivation

Example: For x = 12 and y = 35 , gcd(12, 35) = 1.

(3)12+ (−1)35 = 1.

a = 3 and b = −1.
The multiplicative inverse of 12 (mod 35) is 3.

12

EGCD: Motivation

Example: For x = 12 and y = 35 , gcd(12, 35) = 1.

(3)12+ (−1)35 = 1.

a = 3 and b = −1.
The multiplicative inverse of 12 (mod 35) is 3.

How do we get there using Euclid?

gcd(35, 12) = gcd(12, 11) = gcd(11, 1) = gcd(1, 0) = 1

12

EGCD: Motivation

Example: For x = 12 and y = 35 , gcd(12, 35) = 1.

(3)12+ (−1)35 = 1.

a = 3 and b = −1.
The multiplicative inverse of 12 (mod 35) is 3.

How do we get there using Euclid?

gcd(35, 12) = gcd(12, 11) = gcd(11, 1) = gcd(1, 0) = 1

How did we get 11 from 35 and 12? 35−
⌊ 35
12
⌋
12 = 35− (2)12 = 11.

12

EGCD: Motivation

Example: For x = 12 and y = 35 , gcd(12, 35) = 1.

(3)12+ (−1)35 = 1.

a = 3 and b = −1.
The multiplicative inverse of 12 (mod 35) is 3.

How do we get there using Euclid?

gcd(35, 12) = gcd(12, 11) = gcd(11, 1) = gcd(1, 0) = 1

How did we get 11 from 35 and 12? 35−
⌊ 35
12
⌋
12 = 35− (2)12 = 11. How

did gcd get 1 from 12 and 11? 12−
⌊ 12
11
⌋
11 = 12− (1)11 = 1.

12

EGCD: Motivation

Example: For x = 12 and y = 35 , gcd(12, 35) = 1.

(3)12+ (−1)35 = 1.

a = 3 and b = −1.
The multiplicative inverse of 12 (mod 35) is 3.

How do we get there using Euclid?

gcd(35, 12) = gcd(12, 11) = gcd(11, 1) = gcd(1, 0) = 1

How did we get 11 from 35 and 12? 35−
⌊ 35
12
⌋
12 = 35− (2)12 = 11. How

did gcd get 1 from 12 and 11? 12−
⌊ 12
11
⌋
11 = 12− (1)11 = 1.

What if we work backwards?

1 = 12− 1(11) = 12− 1(35− 2(12)) = 3(12)− 1(35) .

Just keep back-substituting.
12

EGCD Algorithm

How do we turn this into an algorithm?

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

Extended GCD algorithm.

Inputs: x ≥ y ≥ 0 with x > 0. Outputs: integers (d, a,b) where
d = gcd(x, y) = ax+ by.

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

Extended GCD algorithm.

Inputs: x ≥ y ≥ 0 with x > 0. Outputs: integers (d, a,b) where
d = gcd(x, y) = ax+ by.

1. If y = 0, return (x, 1, 0): x = 1x+ 0y.

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

Extended GCD algorithm.

Inputs: x ≥ y ≥ 0 with x > 0. Outputs: integers (d, a,b) where
d = gcd(x, y) = ax+ by.

1. If y = 0, return (x, 1, 0): x = 1x+ 0y.
2. Otherwise, let (d,a,b) be the return value of the extended GCD

algorithm on (y, x− y ⌊x/y⌋).

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

Extended GCD algorithm.

Inputs: x ≥ y ≥ 0 with x > 0. Outputs: integers (d, a,b) where
d = gcd(x, y) = ax+ by.

1. If y = 0, return (x, 1, 0): x = 1x+ 0y.
2. Otherwise, let (d,a,b) be the return value of the extended GCD

algorithm on (y, x− y ⌊x/y⌋).
3. Return (d,b,a− b ⌊x/y⌋).

13

EGCD Algorithm

How do we turn this into an algorithm?

Just run normal GCD but keep track of the coefficients.

Extended GCD algorithm.

Inputs: x ≥ y ≥ 0 with x > 0. Outputs: integers (d, a,b) where
d = gcd(x, y) = ax+ by.

1. If y = 0, return (x, 1, 0): x = 1x+ 0y.
2. Otherwise, let (d,a,b) be the return value of the extended GCD

algorithm on (y, x− y ⌊x/y⌋).
3. Return (d,b,a− b ⌊x/y⌋).

Since this is just GCD (except we track some more numbers),
d = gcd(x, y).

Need to show that d = ax+ by.

13

EGCD: Proof of Correctness

Proof: by

14

EGCD: Proof of Correctness

Proof: by induction on y.

14

EGCD: Proof of Correctness

Proof: by induction on y.

For the base case, y = 0. We return (x, 1, 0) and x = 1x+ 0y, as
desired.

14

EGCD: Proof of Correctness

Proof: by induction on y.

For the base case, y = 0. We return (x, 1, 0) and x = 1x+ 0y, as
desired.

Now suppose for induction that extended GCD returns the correct
coefficients for all y in [0, k]. It suffices to show the claim for y = k+ 1.

14

EGCD: Proof of Correctness

Proof: by induction on y.

For the base case, y = 0. We return (x, 1, 0) and x = 1x+ 0y, as
desired.

Now suppose for induction that extended GCD returns the correct
coefficients for all y in [0, k]. It suffices to show the claim for y = k+ 1.

Return value: (d,b,a− b ⌊x/y⌋) where (d,a,b) is return value of the
extended GCD algorithm on (y, x− y ⌊x/y⌋). By inductive hypothesis,
(d,a,b) is the correct return value for the recursive call, i.e.
ay+ b(x− y ⌊x/y⌋) = d.

14

EGCD: Proof of Correctness

Proof: by induction on y.

For the base case, y = 0. We return (x, 1, 0) and x = 1x+ 0y, as
desired.

Now suppose for induction that extended GCD returns the correct
coefficients for all y in [0, k]. It suffices to show the claim for y = k+ 1.

Return value: (d,b,a− b ⌊x/y⌋) where (d,a,b) is return value of the
extended GCD algorithm on (y, x− y ⌊x/y⌋). By inductive hypothesis,
(d,a,b) is the correct return value for the recursive call, i.e.
ay+ b(x− y ⌊x/y⌋) = d.

Therefore:

d = ay+ b(x− y ⌊x/y⌋) = ay+ bx− by ⌊x/y⌋ = bx+ (a− ⌊x/y⌋b)y ,

as desired.

14

More Arithmetic...

We have addition, subtraction, multiplication, and ”division” now.

15

More Arithmetic...

We have addition, subtraction, multiplication, and ”division” now.

What about exponentiation? After the break.

15

Break!

Exponentiation: Motivation

Can we just simplify exponentiation under congruence the same way
we did with addition and multiplication?

16

Exponentiation: Motivation

Can we just simplify exponentiation under congruence the same way
we did with addition and multiplication?

26 ≡ 64 ≡ 4 ̸≡ 21 (mod 5) .

Guess not.

16

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512) ∗ (512) = 60 ∗ 60 = 3600 ≡ 58 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512) ∗ (512) = 60 ∗ 60 = 3600 ≡ 58 (mod 77)
518 = (514) ∗ (514) = 58 ∗ 58 = 3364 ≡ 53 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512) ∗ (512) = 60 ∗ 60 = 3600 ≡ 58 (mod 77)
518 = (514) ∗ (514) = 58 ∗ 58 = 3364 ≡ 53 (mod 77)
5116 = (518) ∗ (518) = 53 ∗ 53 = 2809 ≡ 37 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512) ∗ (512) = 60 ∗ 60 = 3600 ≡ 58 (mod 77)
518 = (514) ∗ (514) = 58 ∗ 58 = 3364 ≡ 53 (mod 77)
5116 = (518) ∗ (518) = 53 ∗ 53 = 2809 ≡ 37 (mod 77)
5132 = (5116) ∗ (5116) = 37 ∗ 37 = 1369 ≡ 60 (mod 77)

17

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 5143 (mod 77).

511 ≡ 51 (mod 77)
512 = (51) ∗ (51) = 2601 ≡ 60 (mod 77)
514 = (512) ∗ (512) = 60 ∗ 60 = 3600 ≡ 58 (mod 77)
518 = (514) ∗ (514) = 58 ∗ 58 = 3364 ≡ 53 (mod 77)
5116 = (518) ∗ (518) = 53 ∗ 53 = 2809 ≡ 37 (mod 77)
5132 = (5116) ∗ (5116) = 37 ∗ 37 = 1369 ≡ 60 (mod 77)

5132 · 518 · 512 · 511 = (60) ∗ (53) ∗ (60) ∗ (51) ≡ 2 (mod 77) .

17

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1,

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2,

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4,

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . ,

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . , x2⌊log y⌋ .

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . , x2⌊log y⌋ .
2. Multiply together xi where the (log(i))th bit of y (in binary) is 1.

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . , x2⌊log y⌋ .
2. Multiply together xi where the (log(i))th bit of y (in binary) is 1.

Example:

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . , x2⌊log y⌋ .
2. Multiply together xi where the (log(i))th bit of y (in binary) is 1.

Example: 43 = 101011 in binary.

18

Repeated Squaring, Formally

To compute xy (mod n):

1. xy: Compute x1, x2, x4, . . . , x2⌊log y⌋ .
2. Multiply together xi where the (log(i))th bit of y (in binary) is 1.

Example: 43 = 101011 in binary.

x43 = x32 ∗ x8 ∗ x2 ∗ x1

.

How many multiplications required? O(log y). Much faster than
multiplying y times!

18

Algebraic simplification?

Repeated squaring is less useful when you’re dealing with symbolic
expressions... what else do we have in our toolbox?

19

Reduced Residue Systems

Remember that we can divide up the integers into congruence
classes mod n for any n.

Any set of n integers, one from each congruence class, is known a
complete residue system mod n.

One complete residue system mod n: {0, 1, 2, ...,n− 1}.

20

Reduced Residue Systems

Remember that we can divide up the integers into congruence
classes mod n for any n.

Any set of n integers, one from each congruence class, is known a
complete residue system mod n.

One complete residue system mod n: {0, 1, 2, ...,n− 1}.
A subset of a complete residue system only consisting of numbers
relatively prime to n is called a reduced residue system.

One reduced residue system mod n: list of all nonnegative numbers
smaller than n that are relatively prime to it (i.e. numbers whose gcd
with n is 1).

20

Euler’s Totient Function

For n ≥ 1, the totient function ϕ(n) denotes the number of elements
in any reduced residue system mod n. Equivalently: the number of
nonnegative numbers smaller than n that are relatively prime to n.

21

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) I

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) = 1.

22

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) I

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) = 1.

Lemma 1: Suppose gcd(a,n) = 1, and {a1, ..., an} is a complete
residue system mod n. Then for all b, {aa1 + b, ..., aan + b} forms a
complete residue system mod n.

22

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) I

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) = 1.

Lemma 1: Suppose gcd(a,n) = 1, and {a1, ..., an} is a complete
residue system mod n. Then for all b, {aa1 + b, ..., aan + b} forms a
complete residue system mod n.

Proof of Lemma 1: Since gcd(a,n) = 1, we know that there must
exist some c such that ac ≡ 1 (mod n).

Now suppose {a1, ..., an} is a complete residue system mod n. Then
for any integer d, there is a unique k such that c(d− b) ≡ ak (mod n).

22

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) I

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) = 1.

Lemma 1: Suppose gcd(a,n) = 1, and {a1, ..., an} is a complete
residue system mod n. Then for all b, {aa1 + b, ..., aan + b} forms a
complete residue system mod n.

Proof of Lemma 1: Since gcd(a,n) = 1, we know that there must
exist some c such that ac ≡ 1 (mod n).

Now suppose {a1, ..., an} is a complete residue system mod n. Then
for any integer d, there is a unique k such that c(d− b) ≡ ak (mod n).

Therefore: (d− b) ≡ ac(d− b) ≡ aak (mod n) so d ≡ aak + b
(mod n). So each integer is congruent with at least one element in
set.

22

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) I

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) = 1.

Lemma 1: Suppose gcd(a,n) = 1, and {a1, ..., an} is a complete
residue system mod n. Then for all b, {aa1 + b, ..., aan + b} forms a
complete residue system mod n.

Proof of Lemma 1: Since gcd(a,n) = 1, we know that there must
exist some c such that ac ≡ 1 (mod n).

Now suppose {a1, ..., an} is a complete residue system mod n. Then
for any integer d, there is a unique k such that c(d− b) ≡ ak (mod n).

Therefore: (d− b) ≡ ac(d− b) ≡ aak (mod n) so d ≡ aak + b
(mod n). So each integer is congruent with at least one element in
set.

Now suppose d ≡ aaj + b (mod n) and d ≡ aak + b (mod n). Then
c(d− b) = acaj = aj = acak = ak (mod n). So each integer is
congruent with exactly one element in set. So set is a CRS.

22

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) II

Lemma 2: Suppose gcd(a,n) = 1, and {a1, ..., aϕ(n)} is a reduced
residue system mod n. Then {aa1, ..., aaϕ(n)} is also a reduced resude
system mod n.

Proof of Lemma 2: Each of {aa1, ..., aaϕ(n)} must be a distinct
element in a complete residue system mod n by Lemma 1. Since a
reduced residue system has ϕ(n) elements, it suffices to show that
each of {aa1, ..., aaϕ(n)} is relatively prime to n. But this follows
immediately from the fact that both a and ak are relatively prime to
n for all k.

23

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof:

24

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof: Let {a1, ..., aϕ(n)} be a reduced residue system mod n. Then
{aa1, ..., aaϕ(n)} must also be a reduced residue system.

24

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof: Let {a1, ..., aϕ(n)} be a reduced residue system mod n. Then
{aa1, ..., aaϕ(n)} must also be a reduced residue system.

Multiply all the elements of the sets together. They have to be the
same.

24

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof: Let {a1, ..., aϕ(n)} be a reduced residue system mod n. Then
{aa1, ..., aaϕ(n)} must also be a reduced residue system.

Multiply all the elements of the sets together. They have to be the
same.

(aa1)(aa2)(aa3)...(aaϕ(n)) ≡ a1a2...aϕ(n) (mod n) .

24

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof: Let {a1, ..., aϕ(n)} be a reduced residue system mod n. Then
{aa1, ..., aaϕ(n)} must also be a reduced residue system.

Multiply all the elements of the sets together. They have to be the
same.

(aa1)(aa2)(aa3)...(aaϕ(n)) ≡ a1a2...aϕ(n) (mod n) .

Since each ak is relatively prime to n: we can cancel it on both sides
(by existence of multiplicative inverse).

24

Euler’s Theorem (a.k.a. Euler-Fermat Theorem) III

Theorem: Suppose gcd(a,n) = 1. Then aϕ(n) ≡ 1 (mod n).

Proof: Let {a1, ..., aϕ(n)} be a reduced residue system mod n. Then
{aa1, ..., aaϕ(n)} must also be a reduced residue system.

Multiply all the elements of the sets together. They have to be the
same.

(aa1)(aa2)(aa3)...(aaϕ(n)) ≡ a1a2...aϕ(n) (mod n) .

Since each ak is relatively prime to n: we can cancel it on both sides
(by existence of multiplicative inverse).

So:
aϕ(n) ≡ 1 (mod n) .

24

Fermat’s Little Theorem

Fermat’s little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then ap ≡ a (mod p). Furthermore, if
p ̸ |a, then ap−1 ≡ 1 (mod p).

25

Fermat’s Little Theorem

Fermat’s little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then ap ≡ a (mod p). Furthermore, if
p ̸ |a, then ap−1 ≡ 1 (mod p).

Proof: Suppose p|a. Then obviously ap ≡ 0 ≡ a (mod p).

25

Fermat’s Little Theorem

Fermat’s little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then ap ≡ a (mod p). Furthermore, if
p ̸ |a, then ap−1 ≡ 1 (mod p).

Proof: Suppose p|a. Then obviously ap ≡ 0 ≡ a (mod p).

On the other hand, suppose p ̸ |a. How many nonnegative numbers
smaller than p are relatively prime to it?

25

Fermat’s Little Theorem

Fermat’s little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then ap ≡ a (mod p). Furthermore, if
p ̸ |a, then ap−1 ≡ 1 (mod p).

Proof: Suppose p|a. Then obviously ap ≡ 0 ≡ a (mod p).

On the other hand, suppose p ̸ |a. How many nonnegative numbers
smaller than p are relatively prime to it? p− 1 (all except 0).

25

Fermat’s Little Theorem

Fermat’s little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then ap ≡ a (mod p). Furthermore, if
p ̸ |a, then ap−1 ≡ 1 (mod p).

Proof: Suppose p|a. Then obviously ap ≡ 0 ≡ a (mod p).

On the other hand, suppose p ̸ |a. How many nonnegative numbers
smaller than p are relatively prime to it? p− 1 (all except 0). So by
Euler’s theorem: ap−1 = aϕ(p) = 1.

25

Gig(ish): A Combinatorial Look at Fermat’s Little Theorem

26

Questions?

26

