Modular Arithmetic
CS70 Summer 2016 - Lecture 7A

Grace Dinh
01 August 2016

UC Berkeley

Modular Arithmetic Motivation: Clock Math

If it is 1:00 now.

What time is it in 2 hours? 3:00!

What time is it in 5 hours? 6:00!

What time is it in 15 hours? 16:00!

Actually 4:00.

16 is the “same as 4" with respect to a 12 hour clock system.

Clock time equivalent up to to addition/subtraction of 12.
What time is it in 100 hours? 101:00! or 5:00.

101=12 x 8+ 5.
5is the same as 101 for a 12 hour clock system.

Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in {12,1,...,11}
(Almost remainder, except for 12 and 0 are equivalent.)

Announcements

Midterm 2 scores out.

Homework 7 is out. Longer, but due next Wednesday before class, not
next Monday.

There will be no homework 8.

1

Congruences

X is congruent to y modulo m, denoted “x =y (mod m)"..
- if and only if (x — y) is divisible by m (denoted m|(x — y)).
- ifand only if x and y have the same remainder w.rt. m.
+ X =y + km for some integer k.

(these definitions are equivalent).

Congruence partitions the integers into equivalence classes
("congruence classes”). For instance, here are equivalence classes
mod 7 {...,=7,0,7,14,...} {...,—6,1,8,15,...}

Some basic number theory:
- Modular arithmetic
- GCD, Euclidean algorithm, and
multiplicative inverses

- Exponentiation in modular
arithmetic

Mathematics is the queen of the
sciences and number theory is the
queen of mathematics. -Gauss

2
Modular Arithmetic

Theorem: If a =c (mod m)and b=d (mod m), thena+b=c+d
(mod m)anda-b=c-d (mod m).

Proof: Addition: (a+b) —(c+d)=(a—c)+(b—d).Sincea=c
(mod m) the first term is divisible by m, likewise for the second term.
Therefore the entire expression is divisible by m,soa+b=c+d
(mod m).

Multiplication: Let a = kym +cand b = kym +d. Then
ab = (kym + ¢)(kom + d) = (Rikom + Rid + Roc)m + cd

so ab = cd (mod m).

Multiplicative Inverses: Motivation

We have addition, subtraction, and multiplication. What about
division?

What is division? Multiplication by a multiplicative inverse.

xfy =x(1/y).

Formally, a multiplicative inverse of x is a number y such that xy =1,
the multiplicative identity.

Is there a concept of multiplicative inverse in modular arithemtic?

When is there a solution to the equation xy =1+ km?

Can we do better?
Lemma: Suppose d|x and d|y. Then d|(x + ay) for all integers a.

Proof: Write x = k;d and y = k,d for some integers ks, k, (we know
this is possible because d|x and d|y). Then x +ay = (ki +aky)d. O

Theorem: ged(x,y) = ged(x, y + ax) for all integers a.

Proof: Suppose k divides both x and y. Then by the lemma, it divides
Y+ ax as well.

Now suppose k divides both x and y + ax. Then again by lemma, it
must dividey + ax —ax =y.

Therefore, the set of common divisors of x, y is the same as the set of
divisors of x, y + ax which means that the gcd must be the same as
well. O

6
Euclid to the Rescue

Multiplicative Inverses: Existence

Theorem: If greatest common divisor of x and m, gcd(x, m), is 1, then
x has a multiplicative inverse modulo m.

Proof: It suffices to show: all elements of S = {0x,1x,...,(m —1)x}

are distinct mod m. Why? Pigeonhole principle. All distinct means
that one of them has to correspond to T mod m.

Suppose for contradiction that they are not distinct. Then there exist
a,bin {0,...,m — 1} such that ax, bx are in the same congruence
class mod m, i.e. (a — b)x = km for some integer k.

Since ged(x, m) = 1, we must have that m|(a — b), which implies that
a—b>m. Buta,be{0,1,...,m— 1}, so this is impossible.

Contradiction.]

This leads to an algorithm for computing the gcd of x and y
(assuming x >y > 0):

1. Ify is zero, just return x.
2. Otherwise, let X' =x —y § ,and apply the algorithm recursively
to find the ged(y, X); this is also ged(x, y).
(|R] is the smallest integer less than or equal to x)

By the theorem on the previous slide this is guaranteed to give the
right result.

How long does it take to run? O(logy) iterations. Proof: not today.

A lot faster than brute force!

7

The Euclidean Algorithm

Finding GCD

How do we find GCD of x, m?

Naive approach: try every single number in [1, min(x, m)] and see if it
divides x and m both. Keep the biggest number that does.

Obviously works, but how long does that take?

| need min(x, m) divisions. For 64-bit integers, that means up to

204 = 18446744073709551616 divisions - assuming one division per
nanosecond (1 GHz), that's about 585 years to compute a single gcd :(

Now we have a way to tell if there is an inverse. How do we find the
inverse?

Theorem: For any integers x, y, there exist integers a, b such that
ax + by = ged(x,).

How do we find the multiplicative inverse mod m? If ged(x, m) =1,

then we can find a, b such that ax + bm = 1. Equivalently:
ax=1-bm =1 (mod m). Soa=x"" (mod m).

How do we find a, b?

8

Finding the Inverse with EGCD

EGCD: Motivation EGCD Algorlthm EGCD: Proof of Correctness

Example: For x =12 and y = 35, ged(12,35) = 1.
(3)12+ (=135 ="1.

a=3and b= -1

The multiplicative inverse of 12 (mod 35) is 3.
How do we get there using Euclid?

ged(35,12) = ged(12,11) = ged(11,1) = ged(1,0) =1

How did we get 11 from 35 and 127 35 — | 3] 12 = 35— (2)12 = 11. How
did ged get 1 from 12and 11?2 12— |2 [11=12— ()11 =1.

What if we work backwards?

1=12—1(11) = 12 — 1(35 — 2(12)) = 3(12) — 1(35) .

Just keep back-substituting.
12

More Arithmetic...

We have addition, subtraction, multiplication, and "division” now.

What about exponentiation? After the break.

How do we turn this into an algorithm?
Just run normal GCD but keep track of the coefficients.
Extended GCD algorithm.
Inputs: x >y > 0 with x > 0. Outputs: integers (d, a, b) where
d = ged(x,y) = ax + by.

1. Ify =0, return (x,1,0): x = 1x + Oy.

2. Otherwise, let (d, a, b) be the return value of the extended GCD

algorithm on (y,x — y |x/y]).

3. Return (d,b,a — b |x/y]).
Since this is just GCD (except we track some more numbers),
d = ged(x,y).
Need to show that d = ax + by.

Break!

Proof: by induction on'y.

For the base case, y = 0. We return (x,1,0) and x = 1x + 0y, as
desired.

Now suppose for induction that extended GCD returns the correct
coefficients forall y in [0, k]. It suffices to show the claim fory = k+1.

Return value: (d,b,a — b |x/y]) where (d, a, b) is return value of the
extended GCD algorithm on (y,x — y [x/y]). By inductive hypothesis,
(d, a, b) is the correct return value for the recursive call, i.e.

ay+b(x—y[x/y]) =
Therefore:

d=ay+b(x—yl|x/y]) = ay+bx—by|x/y| = bx+(a—[x/y]bly

as desired. O

Exponentiation: Motivation

Can we just simplify exponentiation under congruence the same way
we did with addition and multiplication?

2°=64=4%#2" (mod5) .

Guess not.

Repeated Squaring

One way to do this efficiently: repeated squaring. Keep squaring the
base and simplifying (since multiplication can easily be simplified
under congruence).

Example: compute 51 (mod 77).

51" = 51 (mod 77)

512 = (51) * (51) = 2601 = 60 (mod 77)

514 = (512) (512) = 60 * 60 = 3600 = 58 (mod 77)

518 = (51%) % (51%) = 58 % 58 = 3364 = 53 (mod 77)

5116 = (518) * (518) = 53 % 53 = 2809 = 37 (mod 77)

513 = (51'°) * (51'®) = 37 % 37 = 1369 = 60 (mod 77)

51%2.518.512. 51" = (60) * (53) (60) * (51) =2 (mod 77) .

17

Reduced Residue Systems

Remember that we can divide up the integers into congruence
classes mod n for any n.

Any set of n integers, one from each congruence class, is known a
complete residue system mod n.
One complete residue system mod n: {0,1,2,...,n — 1}.

A subset of a complete residue system only consisting of numbers
relatively prime to n is called a reduced residue system.

One reduced residue system mod n: list of all nonnegative numbers
smaller than n that are relatively prime to it (i.e. numbers whose gcd
with nis 1).

Repeated Squaring, Formally

To compute X (mod n):

log y
1. x%: Compute x',x2, x4, ... x2"™".

2. Multiply together x' where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

X3 = X3 5 X8 x x% x X!

How many multiplications required? O(logy). Much faster than
multiplying y times!

18

Euler's Totient Function

For n > 1, the totient function ¢(n) denotes the number of elements
in any reduced residue system mod n. Equivalently: the number of
nonnegative numbers smaller than n that are relatively prime to n.

Algebraic simplification?

Repeated squaring is less useful when you're dealing with symbolic
expressions... what else do we have in our toolbox?

Euler's Theorem (a.k.a. Euler-Fermat Theorem) |

Theorem: Suppose ged(a,n) = 1. Then a®(M =1,

Lemma 1: Suppose ged(a,n) =1, and {ai,...,a,} is a complete
residue system mod n. Then for all b, {aa; + b, ...,aa, + b} forms a
complete residue system mod n.

Proof of Lemma 1: Since ged(a, n) = 1, we know that there must
exist some c such that ac =1 (mod n).

Now suppose {aj,...,a,} is a complete residue system mod n. Then
for any integer d, there is a unique k such that c(d — b) = a, (mod n).
Therefore: (d — b) = ac(d — b) = aa, (mod n)sod=aa,+b

(mod n). So each integer is congruent with at least one element in
set.

Now suppose d = aa; + b (mod n) and d = aay + b (mod n). Then
c(d — b) = aca; = a; = aca, = ax (mod n). So each integer is
congruent with exactly one element in set. So set is a CRS.]

Euler's Theorem (a.k.a. Euler-Fermat Theorem) II

Lemma 2: Suppose ged(a,n) = 1,and {ay, ..., ag(n) } is a reduced
residue system mod n. Then {aa, ..., adyn } is also a reduced resude
system mod n.

Proof of Lemma 2: Each of {aa, ..., a4} must be a distinct
element in a complete residue system mod n by Lemma 1. Since a
reduced residue system has ¢(n) elements, it suffices to show that
each of {aay, ..., aag() } is relatively prime to n. But this follows
immediately from the fact that both a and ay, are relatively prime to
n for all k. O

Gig(ish): A Combinatorial Look at Fermat’s Little Theorem

23

26

Euler's Theorem (a.k.a. Euler-Fermat Theorem) IlI

Theorem: Suppose ged(a,n) = 1. Then a®™ =1 (mod n).

Proof: Let {a,...,a4(,)} be a reduced residue system mod n. Then
{aa, ...,aa4(,)} must also be a reduced residue system.

Multiply all the elements of the sets together. They have to be the
same.

(aar)(aaz)(aas)...(aag(n)) = A10z...04(ny (mod n) .

Since each ay is relatively prime to n: we can cancel it on both sides
(by existence of multiplicative inverse).

So:
a®™ =1 (mod n) .

24

Questions?

Fermat's Little Theorem

Fermat's little theorem follows immediately from Euler’s theorem.

Theorem: Suppose p is prime. Then a? = a (mod p). Furthermore, if
p fa, then =" =1 (mod p).

Proof: Suppose pla. Then obviously a? = 0 = a (mod p).

On the other hand, suppose p fa. How many nonnegative numbers
smaller than p are relatively prime to it? p — 1 (all except 0). So by
Euler's theorem: aP~' = a?(P) = 1.]

25

