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Markov Chain Properties



Accessibility and Communication

State i is accessible from j if there is some chance that, if I’m at j at
some timestep, I’ll end up at state i some time later.
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Accessibility and Communication

State i is accessible from j if there is some chance that, if I’m at j at
some timestep, I’ll end up at state i some time later.

Formally: State i is accessible from state j if there exists n ≥ 0 such
that (Pn)i,j > 0.

If j is accessible from i and i is accessible from j, then they are said to
“communicate”.

Another way of looking at it: directed connectivity. i communicates
with j: exists path from i to j in the graph corresponding to the chain.
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3



Accessibility and Communication: Example

Is 1 accessible from 2?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No.

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes.

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3? Yes.

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3? Yes. Is 3 accessible from 2?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3? Yes. Is 3 accessible from 2? Yes.

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3? Yes. Is 3 accessible from 2? Yes. Do 1 and 2
communicate?

3



Accessibility and Communication: Example

Is 1 accessible from 2? No. Is 2 accessible from 1? Yes. Do 1 and 2
communicate? No.

Is 2 accessible from 3? Yes. Is 3 accessible from 2? Yes. Do 1 and 2
communicate? Yes.
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Irreducibility

Irreducibile Markov chain: every state communicates with every
other state.
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Irreducibility

Irreducibile Markov chain: every state communicates with every
other state.

Or: graph representation is strongly connected.

Irreducible. Not irreducible.
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Recurrent States

Let’s say we’re at a state i. Do we ever return to it again?

Let rti,j denote the probability that we first hit state j in t steps,
starting from state i. A state is recurrent if

∑
t rti,i = 1 and transient

otherwise.

Is state 1 recurrent? No!
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A Theorem

Suppose we are dealing with a finite MC. Then:
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A Theorem

Suppose we are dealing with a finite MC. Then:

• There is at least one recurrent state.
• For any recurrent state i, the expected hitting time hi,i if we start
from i is finite.

Proof: (first part) Consider a non-recurrent state. If we start at that
timestep, there is a nonzero probability that we will never see it
again.

Then if we start from that state and do an infinite number of
timesteps, the probability that we see that state infinitely many
times is zero.

Start anywhere on the MC and do an infinite number of timesteps.
Since the MC is finite, some step must appear infinitely many times.
So, that step must be recurrent.
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Aperiodicity
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Aperiodicity

Intuition: Suppose we’re in one of these states at some timestep.
Then we can never return to it an odd number of timesteps later.

To capture this intuition: state j is periodic if there exists some
integer ∆ > 1 such that Psj,j = Pr[Xt+S = j|Xt = j] = 0 unless ∆ divides
s.

A Markov chain is said to be periodic if any of its states is periodic.

Opposite of periodic: aperiodic.

7



Aperiodicity of Irreducible Chains - Another Definition

Theorem: Assume that the MC is irreducible.

1gcd = greatest common divisor.
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Aperiodicity of Irreducible Chains - Another Definition

Theorem: Assume that the MC is irreducible. Then

d(j) := g.c.d.{s > 0 | Psj,j > 0}

has the same value for all states i.

Proof: See Lecture note 18.

Definition: If d(j) = 1, the Markov chain is said to be aperiodic.
Otherwise, it is periodic with period d(j).

Are the definitions the same? Yes.

If gcd of all the timesteps where Psj,j is nonzero is greater than 1... On
timesteps s that are not multiples of d(j), Psj,j is zero.

1gcd = greatest common divisor.
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Ergodicity
An aperiodic state that is recurrent is called
ergodic. A Markov chain is said to be ergodic if
all its states are ergodic.
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“Ludwig Boltzmann needed a word to express the
idea that if you took an isolated system at constant
energy and let it run, any one trajectory, continued
long enough, would be representative of the system
as a whole. Being a highly-educated nineteenth
century German-speaker, Boltzmann knew far too
much ancient Greek, so he called this the “ergodic
property”, from ergon “energy, work” and hodos “way,
path.” The name stuck.” (Advanced Data Analysis from
an Elementary Point of View by Shalizi, pg. 479)
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Ergodicity
An aperiodic state that is recurrent is called
ergodic. A Markov chain is said to be ergodic if
all its states are ergodic.

“Ludwig Boltzmann needed a word to express the
idea that if you took an isolated system at constant
energy and let it run, any one trajectory, continued
long enough, would be representative of the system
as a whole. Being a highly-educated nineteenth
century German-speaker, Boltzmann knew far too
much ancient Greek, so he called this the “ergodic
property”, from ergon “energy, work” and hodos “way,
path.” The name stuck.” (Advanced Data Analysis from
an Elementary Point of View by Shalizi, pg. 479)

Theorem: A finite, irreducible, aperiodic Markov
chain is ergodic.
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Stationary and Limiting
Distributions



Stationary Distributions: Motivation

Consider the driving exam MC again.
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Stationary Distributions: Motivation

Consider the driving exam MC again.

Once we pass the test (state 4), we’re done forever. We never leave
state 4.

If our distribution is [0 0 0 1]: distribution is unchanged over a
timestep.
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Or how about the two-cycle?
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Stationary Distributions: Motivation II

Or how about the two-cycle?

What if our distribution is [0.5 0.5]? Does it change with timesteps?
No!
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stationary distribution (a.k.a. an invariant or equilibrium
distribution) if π = πP.
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Definition: Stationary Distribution

A distribution π over states in a Markov chain is said to be a
stationary distribution (a.k.a. an invariant or equilibrium
distribution) if π = πP.

Basically: not affected by timesteps. If we have this distribution, we
have it forever.

Another way of looking at it: π is an eigenvector of P: If we multiply π
by P, we get a multiple of π (actually, π itself). Consequence:
stochastic matrix always has 1 as an eigenvalue!

To find stationary distribution: solve πP = π (”balance equations”)
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An Example

πP = π ⇔ [π1,π2]

[
1− a a
b 1− b

]
= [π1,π2]

⇔ π(1)(1− a) + π2b = π1 and π1a+ π2(1− b) = π2

⇔ π1a = π2b.

These equations are redundant! Add equation equation: π1 + π2 = 1.
Solves to:

π = [
b

a+ b ,
a

a+ b ].
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Another Example

πP = π = [π1,π2]

[
1 0
0 1

]
= [π1,π2]

So:
π1 = π1 and π2 = π2.

Every distribution is invariant for this Markov chain. This is obvious,
since Xn = X0 for all n. Hence, Pr[Xn = i] = Pr[X0 = i], ∀(i,n).
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Main Theorem

Suppose we are given a finite, irreducible, aperiodic Markov chain.
Then:

• There is a unqiue stationary distribution π.
• For all j, i, the limit limt→∞ Ptj,i exists and is independent of j.
• πi = limt→∞ Ptj,i = 1/hi,i

Proof: really long and messy, see note 18 or Ch. 7 of MU. (we won’t
expect you to know this).
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Connections between Linear Algebra and Markov Chains

It turns out that the convergence of the limiting distribution to the
stationary distribution corresponds to a nice result from linear
algebra: if you multiply a random vector by a matrix a lot of times,
the result will converge towards an eigenvector (specifically, one
corresponding to the highest eigenvalue) w.h.p.

Perron-Frobenius: positive elements→ single highest eigenvalue (1,
here), i.e. one with a unique eigenvector (up to constant factors).
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It turns out that the convergence of the limiting distribution to the
stationary distribution corresponds to a nice result from linear
algebra: if you multiply a random vector by a matrix a lot of times,
the result will converge towards an eigenvector (specifically, one
corresponding to the highest eigenvalue) w.h.p.

Perron-Frobenius: positive elements→ single highest eigenvalue (1,
here), i.e. one with a unique eigenvector (up to constant factors).

(No, you do not need to know this for the midterms and the
homeworks).
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you win a dollar. Tails: you lose a dollar. Repeat.
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The Gambler’s Ruin

Suppose you play a game with your friend. Flip a fair coin. Heads:
you win a dollar. Tails: you lose a dollar. Repeat.

You win when you get all your friend’s money. You lose when your
friend gets all of yours.

What is the probability that you win?

If you and your friend have same amount of money: 1/2 by symmetry.

What if you and your friend are willing to bet different amounts?
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The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

18



The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

States −l1, l2 are recurrent; all others are transient. What is the
probability that you win (i.e. you hit state l2 before l1)?

18



The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

States −l1, l2 are recurrent; all others are transient. What is the
probability that you win (i.e. you hit state l2 before l1)?

Let Pti be the probability that you’re at state i after t timesteps.

18



The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

States −l1, l2 are recurrent; all others are transient. What is the
probability that you win (i.e. you hit state l2 before l1)?

Let Pti be the probability that you’re at state i after t timesteps. What’s
limt→∞ Pti for i ∈ [−l1 + 1, l2 − 1]?

18



The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

States −l1, l2 are recurrent; all others are transient. What is the
probability that you win (i.e. you hit state l2 before l1)?

Let Pti be the probability that you’re at state i after t timesteps. What’s
limt→∞ Pti for i ∈ [−l1 + 1, l2 − 1]? 0 (since they are transient states).

18



The Gambler’s Ruin II

Suppose you have l1 dollars and your friend has l2. Express as above
Markov chain.

States −l1, l2 are recurrent; all others are transient. What is the
probability that you win (i.e. you hit state l2 before l1)?

Let Pti be the probability that you’re at state i after t timesteps. What’s
limt→∞ Pti for i ∈ [−l1 + 1, l2 − 1]? 0 (since they are transient states).
Want to find: q := limt→∞ Ptl2 : probability that you win (state is
absorbed into l2).
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Denote amount of money you have at timestep t as Wt.
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Denote amount of money you have at timestep t as Wt.

What’s the expected amount of money you have after a single step?
0. What’s the expected gain after t steps, E[Wt]? 0, by induction.

So:
E[Wt] =

∑

i∈[−l1,l2]
iPti = 0

.
lim
t→∞

E[Wt] = l2q− l1(1− q) = 0

Solve: q = l1/(l1 + l2). The more money you’re willing to bet, the
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Random Walks



Motivation

Suppose I give you a connected graph and you walk around on it
randomly.
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Suppose I give you a connected graph and you walk around on it
randomly.

At each vertex you pick a random edge (with uniform probability) to
traverse. Probability of choosing a particular edge from vertex i:
1/d(i) where d(i) is the degree of i.

This is a Markov chain!

Is it irreducible? Yes, if it’s connected.

20



Aperiodicity of Random Walks

Theorem: A random walk on an undirected, connected graph is
aperiodic if and only if the graph is not bipartite.
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Proof: Suppose graph is bipartite. Then if I start at a node I can never
go back in an odd number of timesteps. So random walk is periodic.

Conversely, suppose graph is not bipartite. Then there’s on odd cycle
(lecture 6). So we have a path of odd length from any node to itself.

Then there exists an n′ such that for all n ≥ n′, I can go from my start
node back to itself in n timesteps. Why?

If n is even: just go to the next node and back n/2 times.

If n is odd: Go to some node in cycle (graph is connected). Traverse
cycle. Go back. Going to node and back takes even number of
timesteps. Traversing cycle takes odd number of timesteps. Total
number of timesteps: odd.

So random walk is periodic.
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Stationary Distribution of Random Walks

Theorem: A random walk on a graph G converges to a stationary
distribution π where πv = d(v)

2|E| .
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Stationary Distribution of Random Walks

Theorem: A random walk on a graph G converges to a stationary
distribution π where πv = d(v)

2|E| .

Proof: Is this a distribution at all?
∑

v d(v) = 2 |E| so∑
v πv =

∑
v d(v)/(2 |E|) = 1. It’s a distribution.

Why is it stationary? Let N(v) represent the neighbors of v. Want to
show: π = πP. Equivalently:

πv =
∑

u∈N(v)

d(u)
2 |E|

1
d(u) =

d(v)
2 |E|

.

So π solves the balance equations, so it’s stationary.
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Cover Time I

Immediately follows that for any u, hu,u = 2 |E| /d(u).
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Cover Time I

Immediately follows that for any u, hu,u = 2 |E| /d(u).
Lemma: If (u, v) ∈ E, then hu,v < 2 |E|.
Proof:

2 |E|
d(u) = hu,u =

1
d(u)

∑

w∈N(u)
(1+ hw,u)

Cancel:
2 |E| = hu,u =

∑

w∈N(u)
(1+ hw,u)

Since v ∈ N(u): hv,u < 2 |E|
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Cover Time II

Say I start from some vertex and do a random walk. How long does it
take me to touch every single node in the graph? Cover time: the
longest such time (for any starting vertex).
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you’re more likely to stumble on the top result than the lower results
when browsing the web.

Assume you click links on webpages randomly forever. How often are
you going to run into a webpage?

Model with a random walk on a directed graph! At each webpage:
click random link.

Want to find the stationary distribution of this walk. Problem: graph
isn’t strongly connected.

Solution: with small probability, go to a random website instead of
clicking a link.

MC is irreducible and aperiodic, so its limiting distribution must be
the unique stationary distribution.

Find the limiting distribution by solving an eigenvalue problem!
(Math 128B, Math 221) 25
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