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Quiz is out! Due: Friday at noon.

What are Markov Chains? State machine
and matrix representations.

Hitting Time

A A Mapion (1886).
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Suppose we flip a coin until we get a three heads in a row. How
many coin flips should we expect to do?

Drunkard on an arbitrary graph (remember HW?). When does the
drunkard come home?

Try solving directly? Problem: conditioning gets really messy.
Need some way to express state.

Solution: Markov chains!
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A finite Markov chain consists of states, transition probabilities
between states, and an initial distribution.

State: where are you now?
Transition probability: From where you are, where do you go next?
Initial distribution: how do you start?

Markov chains are memoryless - they don’t remember anything
other than what state they are.
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A finite set of states: X = {1,2,...,K}
A'initial probability distribution my on X : mo(i) > 0, mo(i) =1
Transition probabilities: P(i,j) for i,j € X
P(i,j) = 0,Vi,j; 32 P(i,j) = 1, Vi
{Xn,n > 0} is defined so that:

* Pr[Xo = i] = mo(i), i € X (initial distribution)
« PriXnia=j | Xo,... . Xa =1 = P(i,)),i,j € X. “
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At each timestep t we are in some state X; € X. (random variable.)

Where do we go next?

PriXew1 = jIXe = i] = Pjj

Probability depends on the previous state, but is independent of how
it got to the previous state. (It's not independent of states before the
previous state - but any dependence is captured in the previous
state.)
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At some point we might have a distribution for X; - say, it's 1 w.p. 0.2,
2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X¢,1? Probability that it
goes to 17

PriXeqr =11 = ) PriXeq =X =] Pr[X; =]
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At some point we might have a distribution for X; - say, it's 1 w.p. 0.2,
2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X¢,1? Probability that it
goes to 17

PriXeq1 =1 = Y PriXeq =1X =P =i]=> Pi;PriX; =]
i i

1
= 09%02+0%x034+0.1%x0.5
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At some point we might have a distribution for X; - say, it's 1 w.p. 0.2,

2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X¢,1? Probability that it
goes to 17

PriXeq1 =1 = Y PriXeq =1X =P =i]=> Pi;PriX; =]

1 I
= 09%02+0%x03+4+0.1%x0.5=0.23

Rest of distribution for X¢,1 can be found similarly.



Linear Algebra Intro

Very quick linear algebra intro:



Linear Algebra Intro

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. n x m matrix has n
rows, m columns. Element at ith row, jth column denoted A;,.



Linear Algebra Intro

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. n x m matrix has n
rows, m columns. Element at ith row, jth column denoted A;,.

N O O —
U1 o U1 O
w N O
co N W N



Linear Algebra Intro

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. n x m matrix has n
rows, m columns. Element at ith row, jth column denoted A;,.

N O O —
U1 o U1 O
w N O
co N W N

Vector: one-dimensional collection of numbers. We deal with row
vectors - n x 1 matrices.
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Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. n x m matrix has n
rows, m columns. Element at ith row, jth column denoted A;,.
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U1 o U1 O
w N O
co N W N

Vector: one-dimensional collection of numbers. We deal with row
vectors - n x 1 matrices.
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For n x m matrix A and m x p matrix B:

(AB)j = AiByj
K

Or for vector x:

(XA)i =D XeAri
k

1T 6 7 2 T%*54+6%x94+8+%3+2%0
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Markov chains have a very nice translation to matrices! Transition
probabilities form an transition matrix P whose i, jth entry is P; ;.

09 01 O
P=1]0 04 0.6
0.1 0.4 05

Probabilities from a state sum to 1..rows sum to 1... (right) stochastic
matrix. 9
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Distributions are vectors. Suppose that X; is distributed 1T w.p. 0.2, 2
w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

=102 03 0.5}

What's the product of m; and P?
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Distributions are vectors. Suppose that X; is distributed 1T w.p. 0.2, 2
w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

=102 03 0.5}
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Stepping with Multiplication

09 01 O
P=1]0 04 0.6
0.1 0.4 05

Distributions are vectors. Suppose that X; is distributed 1T w.p. 0.2, 2
w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

=102 03 0.5}

What's the product of m; and P?

0.2%0.9403%0+0.5%0.1
02%01+03%0.4+05%0.4 :[0.23 0.34 0.43}
02x0+03%x0.64+05%0.5

This is the distribution of X¢.
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Multiple Steps with Matrix Powers

One step: my — P

What if we take two steps? What's the distribution?
T —> (ﬂ'tP)P = 71'[P2

n steps? mP".

This will be very useful when we start talking about limiting
distributions (next lecture).

1



An Example

California driving test: you get 3 retakes before you have to start the
application process all over again. Suppose someone passes a
driving test w.p. 0.6, unless it's their final retake, in which case
they're more careful and pass w.p. 0.8.
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application process all over again. Suppose someone passes a
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they're more careful and pass w.p. 0.8.
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An Example
0.2 TR
Initial distribution? w9 = [10 0 Q]
m Transition matrix?
0.4 D4

Q240246
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How long does it take to get a driver’s license, in expectation?

Generally: given a Markov chain and an initial distribution, how many
timesteps do we expect to take before reaching a particular state?
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A Simple Example

Let's flip a coin with Pr[H] = p until we get H. How many flips, on

average?
q=1—p P
ScoglG
X[}

Let B(S) be the average time until £, starting from S. Then,

B(S) =1+ qB(S) + po.
Hence,
pB(S) =1, so that B(S) =1/p.

Note: Time until E is G(p). We have rediscovered that the mean of
G(p) is 1/p.
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How Long to Get a Driver’s License?

Let 5(S) denote expected time to get a driver’s license from S.
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How Long to Get a Driver’s License?

B() = 1+0.6%0+0.4%5(2)
B(2) = 14+0.6%x040.4x%3(3)
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How Long to Get a Driver’s License?

B() = 1+0.6%0+0.4%5(2)
B(2) = 14+0.6%x040.4x%3(3)
B(3) = 1+0.8%0+0.2%8()

Solves to (1) =~ 1.671.

16
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Driving test

A driving test consists of 20 maneuvers that must be done properly.
The examinee succeeds w.p. p = 0.9 for each maneuver. Otherwise,
he fails the driving test and has to start all over again. How many
maneuvers does it take to pass the test?

0 1 n—1 n n+l1 20
P P P P P P P

D

B(n) =1+ pA(n+1)+9B8(0),0 <n <19
B(19) =1+ p0 + gB(0)

p—2071
1-p

= B(0) =

See Lecture Note 24 for algebra.

=~ 72.
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