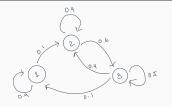
Markov Chains

CS70 Summer 2016 - Lecture 6B

Grace Dinh 26 July 2016 UC Berkeley

Intuition



A finite Markov chain consists of states, transition probabilities between states, and an *initial distribution*.

State: where are you now?

Transition probability: From where you are, where do you go next?

Initial distribution: how do you start?

Markov chains are **memoryless** - they don't remember anything other than what state they are.

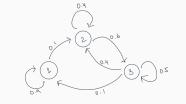
Agenda

Quiz is out! Due: Friday at noon.

What are Markov Chains? State machine and matrix representations.

Hitting Time

Formally Speaking...



A finite set of states: $\mathcal{X} = \{1, 2, ..., K\}$ A initial probability distribution π_0 on $\mathcal{X} : \pi_0(i) \ge 0, \sum_i \pi_0(i) = 1$ Transition probabilities: P(i, j) for $i, j \in \mathcal{X}$

• $P(i,j) \ge 0, \forall i,j; \sum_{j} P(i,j) = 1, \forall i$

 $\{X_n, n \ge 0\}$ is defined so that:

- $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$ (initial distribution)
- $Pr[X_{n+1}=j \mid X_0,\ldots,X_n=i] = P(i,j), i,j \in \mathcal{X}.$

4

Motivation

Suppose we flip a coin until we get a three heads in a row. How many coin flips should we expect to do?

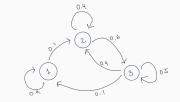
Drunkard on an arbitrary graph (remember HW?). When does the drunkard come home?

Try solving directly? Problem: conditioning gets really messy.

Need some way to express state.

Solution: Markov chains!

One Small (Time)step for a State



At each timestep t we are in some state $X_t \in \mathcal{X}$. (random variable.) Where do we go next?

$$\Pr[X_{t+1} = j | X_t = i] = P_{i,j}$$

Probability depends on the previous state, but is independent of how it got to the previous state. (It's not independent of states before the previous state - but any dependence is captured in the previous state.)

5

One Giant Leap with Conditional Probability

goes to 1?

Matrix Markov

Linear Algebra Intro

Very quick linear algebra intro:

Matrices: two-dimensional collection of numbers. $n \times m$ matrix has n rows, *m* columns. Element at *i*th row, *j*th column denoted A_{ii}.

3

8

Vector: one-dimensional collection of numbers. We deal with row **vectors** - $n \times 1$ matrices.

5 9 3 0

Stepping with Multiplication

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Distributions are vectors. Suppose that X_t is distributed 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Write distribution as vector!

$$\pi_t = \begin{bmatrix} 0.2 & 0.3 & 0.5 \end{bmatrix}$$

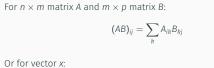
What's the product of π_t and *P*?

$$\begin{bmatrix} 0.2 * 0.9 + 0.3 * 0 + 0.5 * 0.1 \\ 0.2 * 0.1 + 0.3 * 0.4 + 0.5 * 0.4 \\ 0.2 * 0 + 0.3 * 0.6 + 0.5 * 0.5 \end{bmatrix}^{T} = \begin{bmatrix} 0.23 & 0.34 & 0.43 \end{bmatrix}$$

This is the distribution of X_{t+1} .

Matrix Multplication

5



$$(xA)_i = \sum_k x_k A$$

9 3 0]
$$\begin{bmatrix} 1 & 6 & 7 & 2 \\ 6 & 5 & 6 & 3 \\ 8 & 6 & 2 & 2 \\ 2 & 5 & 3 & 8 \end{bmatrix} = \begin{bmatrix} 1*5+6*9+8*3+2*0 \\ 6*5+5*9+6*3+5*0 \\ 7*5+6*9+2*3+3*0 \\ 2*5+3*9+2*3+8*0 \end{bmatrix}^{T}$$

Multiple Steps with Matrix Powers

One step: $\pi_t \to \pi_t P$

What if we take two steps? What's the distribution? $\pi_t \rightarrow (\pi_t P)P = \pi_t P^2$

n steps? $\pi_t P^n$.

This will be very useful when we start talking about limiting distributions (next lecture).

11

 $P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0 & 0.4 & 0.6 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$

Markov chains have a very nice translation to matrices! Transition

probabilities form an transition matrix P whose *i*, *j*th entry is P_{*i*,*i*}.

Probabilities from a state sum to 1...rows sum to 1... (right) stochastic matrix.

At some point we might have a distribution for X_t - say, it's 1 w.p. 0.2, 2 w.p. 0.3, and 3 w.p. 0.5. Distribution for X_{t+1}? Probability that it

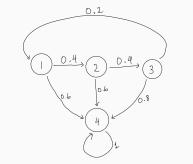
 $\Pr[X_{t+1} = 1] = \sum_{i} \Pr[X_{t+1} = 1 | X_t = i] \Pr[X_t = i] = \sum_{i} P_{i,1} \Pr[X_t = i]$ = 0.9 * 0.2 + 0 * 0.3 + 0.1 * 0.5 = 0.23

Rest of distribution for X_{t+1} can be found similarly.

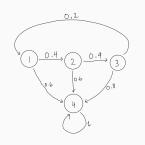
10

An Example

California driving test: you get 3 retakes before you have to start the application process all over again. Suppose someone passes a driving test w.p. 0.6, unless it's their final retake, in which case they're more careful and pass w.p. 0.8.



Motivation



How long does it take to get a driver's license, in expectation?

Generally: given a Markov chain and an initial distribution, how many timesteps do we expect to take before reaching a particular state?

An Example

A Simple Example

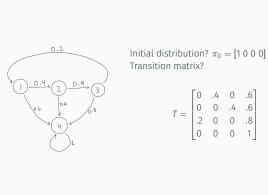
average?

Hence.

G(p) is 1/p.

12

14



Let's flip a coin with Pr[H] = p until we get H. How many flips, on

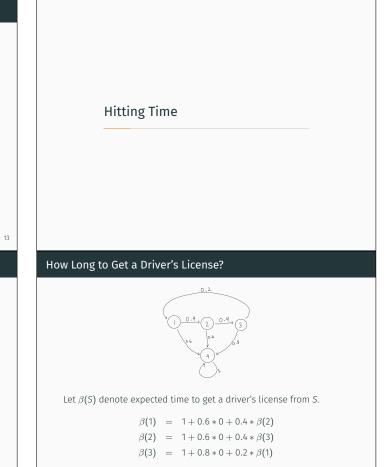
q = 1 - p

Let $\beta(S)$ be the average time until *E*, starting from *S*. Then,

 $\beta(S) = 1 + q\beta(S) + p0.$

 $p\beta(S) = 1$, so that $\beta(S) = 1/p$.

Note: Time until *E* is *G*(*p*). We have rediscovered that the mean of



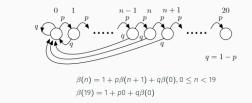
Solves to $\beta(1) \approx 1.61$.

15

16

Driving test

A driving test consists of 20 maneuvers that must be done properly. The examinee succeeds w.p. p = 0.9 for each maneuver. Otherwise, he fails the driving test and has to start all over again. How many maneuvers does it take to pass the test?



$$\Rightarrow \beta(0) = \frac{p^{-20} - 1}{1 - p} \approx 72$$

17

See Lecture Note 24 for algebra.

Gig: Random names, random headlines