
Continuous Probability
CS70 Summer 2016 - Lecture 6A

Grace Dinh
25 July 2016

UC Berkeley

Logistics

Tutoring Sections - M/W 5-8PM in 540 Cory.

• Conceptual discussions of material
• No homework discussion (take that to OH/HW party, please)

Midterm is this Friday - 11:30-1:30, same rooms as last time.

• Covers material from MT1 to this Wednesday...
• ...but we will expect you to know everything we’ve covered from
the start of class.

• One double-sided sheet of notes allowed (our advice: reuse
sheet from MT1 and add MT2 topics to the other side).

• Students with time conflicts and DSP students should have been
contacted by us - if you are one and you haven’t heard from us,
get in touch ASAP.

1

Today

• What is continuous probability?
• Expectation and variance in the continuous setting.
• Some common distributions.
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Continuous Probability

Motivation I

Sometimes you can’t model things discretely. Random real numbers.
Points on a map. Time.

Probability space is continuous.

What is probability? Function mapping events to [0, 1].

What is an event in continuous probability?
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Motivation II

Class starts at 14:10. You take your seat at some ”uniform” random
time between 14:00 and 14:10.

What’s an event here? Probability of coming in at exactly 14:03:47.32?

Sample space: all times between 14:00 and 14:10.

Size of sample space? How many numbers are there between 0 and
10? infinite

Chance of getting one event in an infinite sized uniform sample
space? 0

Not so simple to define events in continuous probability!
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Motivation III

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.6

0.8

1.0

5

PDF (no, not the file format)

What happens when you take k→ ∞? Probability goes to 0.

What do we do so that this doesn’t disappear? If we split our sample
space into k pieces - multiply each one by k.
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Formally speaking...

PDF fX(t) of a random variable X is defined so that the probability of
X taking on a value in [t, t+ δ] is δf(t) for infinitesimally small δ.

fX(t) = lim
δ→0

Pr[X ∈ [t, t+ δ]]

δ

Another way of looking at it:

Pr[X ∈ [a,b]] =
� b

a
fX(t)dt

f is nonnegative (negative probability doesn’t make much sense).

Total probability is 1:
�∞
−∞ fX(t)dt = 1
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CDF

Cumulative distribution function (CDF): FX(t) = Pr[X ≤ t].

Or, in terms of PDF...

FX(t) =
� t

−∞
fX(z)dz

Pr[X ∈ (a,b]] = Pr[X ≤ b]− Pr[X ≤ a]
= FX(b)− FX(a)

FX(t) ∈ [0, 1]

lim
t→−∞

FX(t) = 0

lim
t→∞

FX(t) = 1
8

In Pictures

9

Expectation

Discrete case: E[X] =
�∞

t=−∞(Pr[X = t]t)

Continuous case? Sum → integral.

E[X] =
� ∞

−∞
tfX(t)dt

Expectation of a function?

E[g(X)] =
� ∞

−∞
g(t)fX(t)dt

Linearity of expectation:

E[aX+ bY] = aE[X] + bE[Y]

Proof: similar to discrete case.

If X, Y, Z are mutually independent, then E[XYZ] = E[X]E[Y]E[Z].

Proof: also similar to discrete case.

Exercise: try proving these yourself. 10



Variance

Variance is defined exactly like it is for the discrete case.

Var(X) = E[(X− E[X])2]
= E[X2]− E[X]2

The standard properties for variance hold in the continuous case as
well.

Var(aX) = a2Var(X)

For independent r.v. X, Y:

Var(X+ Y) = Var(X) + Var(Y)

.
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Target shooting

Suppose an archer always hits a circular target with 1 meter radius,
and the exact point that he hits is distributed uniformly across the
target. What is the distribution the distance between his arrow and
the center (call this r.v. X)?

t

1

Probability that arrow is closer than t to the center?

Pr[X ≤ t] =
area of small circle
area of dartboard

=
πt2
π

= t2.
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Target shooting II

CDF:

FY(t) = Pr[Y ≤ t] =





0 for t < 0
t2 for 0 ≤ t ≤ 1
1 for t > 1

PDF?

fY(t) = FY(t)′ =
�

2t for 0 ≤ t ≤ 1
0 otherwise
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Target shooting III

Another way of attacking the same problem: what’s the probability of
hitting some ring with inner radius t and outer radius t+ δ for small
δ?

t

t+ δ

Area of circle: π

Area of ring:

π((t+ δ)2 − t2) = π(t2 + 2tδ + δ2 − t2) = π(2tδ + δ2) ≈ π2tδ

Probability of hitting the ring: 2tδ.

PDF for t ≤ 1: 2t
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Shifting & Scaling

Let fX(x) be the pdf of X and Y = a+ bX where b > 0. Then

Pr[Y ∈ (y, y+ δ)] = Pr[a+ bX ∈ (y, y+ δ)]

= Pr[X ∈ (
y− a
b ,

y+ δ − a
b )]

= Pr[X ∈ (
y− a
b ,

y− a
b +

δ

b )]

= fX(
y− a
b )

δ

b .

Left-hand side is fY(y)δ. Hence,

fY(y) =
1
bfX(

y− a
b ).

15

Continuous Distributions



Uniform Distribution: CDF and PDF

PDF is constant over some interval [a,b], zero outside the interval.

What’s the value of the constant in the interval?

� ∞

−∞
kdt =

� b

a
kdt = b− a = 1

so PDF is 1/(b− a) in [a,b] and 0 otherwise.

CDF? � t

−∞
1/(b− a)dz

0 for t < a, (t− a)/(b− a) for a < t < b, and 1 for t > b.
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Uniform Distribution: CDF and PDF, Graphically

fX(t) =
�
1/(b− a) a < t < b
0 otherwise

FX(t) =





0 t < a
(t− a)/(b− a) a < t < b
1 b<t
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Uniform Distribution: Expectation and Variance

Expectation?

E[X] =
� b

a

t
b− adt =

1
2
b2 − a2
b− a =

b+ a
2

Variance?

Var[X] = E[X2]− E[X]2

=
� b
a

t2
b−adt−

� b+a
‘2

�2

= t3
3(b−a)

��b
a −

� b+a
‘2

�2

= (a−b)2
12
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Exponential Distribution: Motivation

Continuous-time analogue of the geometric distribution.

How long until a server fails? How long does it take you to run into
pokemon?

Can’t “continuously flip a coin”. What do we do?

Look at geometric distributions representing processes with higher
and higher granularity.
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Exponential Distribution: Motivation II

Suppose a server fails with probability λ every day.

Probability that server fails on the same day as time t:

(1− λ)⌈t⌉−1λ

More precision! What’s the probability that it fails in a 12-hour
period? λ/2 if we assume that there is no time that it’s more likely to
fail than another.

Generally: server fails with probability λ/n during any 1/n-day time
period.

Probability that server fails on the same 1/n-day time period as t:

�
1− λ

n

�⌈tn⌉−1
λ

n

20

Exponential Distribution: Motivation III

�
1− λ

n

�⌈tn⌉−1
λ

n

What happens when we try to take n to ∞?

Probability goes to zero...but we can make a PDF out of this!

Remove the width of the interval (1/n) and take the limit as n→ ∞
to get:

lim
n→∞

�
1− λ

n

�⌈tn⌉−1
λ = λ limn→∞

�
1− λ

n
�tn−1

= λe−λt

This is the PDF of the exponential distribution!
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Exponential Distribution: PDF and CDF

The exponential distribution with parameter λ > 0 is defined by

fX(t) =
�

0, if t < 0
λe−λt, if t ≥ 0.

FX(t) =
�

0, if t < 0
1− e−λt, if t ≥ 0.

Note that Pr[X > t] = e−λt for t > 0.
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Expectation & Variance of the Exponential Distribution

X = Expo(λ). Then, fX(x) = λe−λx for 0 ≤ x ≤ 1. Thus,

E[X] =
� ∞

0
xλe−λxdx = −

� ∞

0
xde−λx.

Integration by parts:
� ∞

0
xde−λx = [xe−λx]∞0 −

� ∞

0
e−λxdx

= 0− 0+
1
λ

� ∞

0
de−λx = − 1

λ
.

So: expectation is E[X] = 1
λ .

Variance: 1/λ2
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Properties of the Exponential Distribution: Memorylessness

Similar to memorylessness for geometric distributions.

“If your server doesn’t fail today, it’s in the same state as it was
before today.”

Let X = Expo(λ). Then, for s, t > 0,

Pr[X > t+ s | X > s] =
Pr[X > t+ s]
Pr[X > s]

=
e−λ(t+s)

e−λs = e−λt

= Pr[X > t].
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Properties of the Exponential Distribution: Scaling

Let X = Expo(λ) and Y = aX for some a > 0. Then

Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]
= e−λ(t/a) = e−(λ/a)t = Pr[Z > t] for Z = Expo(λ/a).

Thus, a× Expo(λ) = Expo(λ/a). Also, Expo(λ) = 1
λExpo(1).
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Normal Distribution

Continuous counterpart to Binomial dist. (more on this later)

Normal (or Gaussian) distribution with parameters µ, σ2, denoted
N (µ,σ2):

fX(t) =
1√
2πσ2

e−
(t−µ)2

2σ2

-4 -2 2 4
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0.4

Sometimes called a ”bell curve”. Above: N (0, 1), the ”standard
normal”. 26

Normal Distribution: Properties

PDF: fX(t) = 1√
2πσ2 e

− (t−µ)2

2σ2

CDF: involves an integral with no nice closed form (often expressed
in terms of “erf”, the error function). Won’t discuss it here.

Expectation: µ (notice that PDF is symmetric around µ).

Variance: σ2 (fairly straightforward integration)

Scaling/Shifting: if X ∼ N (0, 1) and Y = µ+ σX, then Y ∼ N (µ,σ2).

“68-95-99.7 rule”: for a normal distribution, roughly 68% of the
probability mass lies within one standard deviation of the mean,
roughly 95% within two standard deviations, and 99.7% within three
standard deviations.

“n-sigma events” - sometimes used as a shorthand to describe the
probability of the event as being the same probability of something
falling over n standard deviations away from the mean in a normal
distribution.
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How Many Sigmas, Exactly?
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Central Limit Theorem

Basically: if you take a lot of i.i.d random variables from any∗
distribution with zero mean and the same variance and sum them
up, the sum will converge to a random Gaussian with the same mean
and variance.

Suppose X1, X2, ... are i.i.d. random variables with expectation µ and
variance σ2. Let

Sn :=
An − nµ
σ
√
n

=
(
�

i Xi)− nµ
σ
√
n

Then Sn tends towards N (0, 1) as n→ ∞.

Or:
Pr[Sn ≤ a] → 1√

2π

� α

−∞
e−x

2/2dx

Proof: EE126

Sum of Bernoullis (binomial) tends towards normal!
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Summary

Continuous probability: translation of discrete probability to a
continuous sample space with an infinite number of events.

Concepts of variance, expectation, etc. translate to continuous too.

Geometric distribution → exponential distribution.

Binomial distribution → normal distribution.

Central limit theorem: everything converges to normal if we take
enough samples
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Today’s Gig: Cauchy Distribution

Cauchy

Augustin-Louis Cauchy (1789-1857)

Practically invented complex
analysis. Made fundamental
contributions to calculus and
group theory.

“More concepts and theorems
have been named for Cauchy than
for any other mathematician.”

Was also a baron because he
tutored a duke... who ended up
hating math.
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Definition

Actually first written about by Poisson in 1824. Cauchy became
associated with it in 1853!

Suppose I have a wall on the x-axis. Stand at (0,1) and point a laser
at a uniform random angle such that the laser hits the wall.

What is the distribution of the point on the wall?

tan θ = t

θ = tan−1 t

dθ =
1

1+ t2dt

dθ
π

=
1

1+ t2
dt
π

32



Properties

PDF: 1
π(1+ t2)

Expectation?

� ∞

−∞

t
π(1+ t2)dt = lima→∞

� a
−a

t
π(1+t2)dt = 0

= lima→∞
� 2a
−a

t
π(1+t2)dt ̸= 0

Expectation doesn’t exist!

If you try to estimate the expectation by sampling points and
averaging, you’ll get crazy results.

Variance doesn’t exist either.

Main takeaway: there are some really badly-behaved distributions
out there.
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Questions?
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