Continuous Probability

CS70 Summer 2016 - Lecture 6A

Grace Dinh 25 July 2016

UC Berkeley

Continuous Probability

Logistics

Tutoring Sections - M/W 5-8PM in 540 Cory.

- Conceptual discussions of material
- No homework discussion (take that to OH/HW party, please)

Midterm is this Friday - 11:30-1:30, same rooms as last time.

- Covers material from MT1 to this Wednesday...
- ...but we will expect you to know everything we've covered from the start of class.
- One **double**-sided sheet of notes allowed (our advice: reuse sheet from MT1 and add MT2 topics to the other side).
- Students with time conflicts and DSP students should have been contacted by us if you are one and you haven't heard from us, get in touch ASAP.

Motivation I

Sometimes you can't model things discretely. Random real numbers. Points on a map. Time.

Probability space is **continuous**.

What is probability? Function mapping events to [0, 1].

What is an event in continuous probability?

Today

• What is continuous probability?

- Expectation and variance in the continuous setting.
- Some common distributions.

Motivation II

Class starts at 14:10. You take your seat at some "uniform" random time between 14:00 and 14:10.

What's an event here? Probability of coming in at exactly 14:03:47.32?

Sample space: all times between 14:00 and 14:10.

Size of sample space? How many numbers are there between 0 and 10? infinite

Chance of getting one event in an infinite sized uniform sample space? $\boldsymbol{0}$

4

Not so simple to define events in continuous probability!

Cumulative distribution function (CDF): $F_X(t) = \Pr[X \le t]$. Or, in terms of PDF...

8

PDF (no, not the file format)

What happens when you take $k \rightarrow \infty$? Probability goes to 0.

What do we do so that this doesn't disappear? If we split our sample space into *k* pieces - multiply each one by *k*.

$Pr[X \leq x] \\ F_X(x) \\ f_X(x)$

Formally speaking...

PDF $f_X(t)$ of a random variable X is defined so that the probability of X taking on a value in $[t, t + \delta]$ is $\delta f(t)$ for infinitesimally small δ .

$$f_X(t) = \lim_{\delta \to 0} \frac{\Pr[X \in [t, t+\delta]]}{\delta}$$

Another way of looking at it:

$$\Pr[X \in [a, b]] = \int_{a}^{b} f_X(t) dt$$

f is nonnegative (negative probability doesn't make much sense). Total probability is 1: $\int_{-\infty}^{\infty} f_{X}(t) dt = 1$

Expectation

Discrete case:
$$E[X] = \sum_{t=-\infty}^{\infty} (\Pr[X = t]t)$$

Continuous case? Sum \rightarrow integral.
 $E[X] = \int_{-\infty}^{\infty} tf_X(t)dt$
Expectation of a function?
 $E[g(X)] = \int_{-\infty}^{\infty} g(t)f_X(t)dt$
Linearity of expectation:
 $E[aX + bY] = aE[X] + bE[Y]$
Proof: similar to discrete case.
If X, Y, Z are mutually independent, then $E[XYZ] = E[X]E[Y]E[Z]$.
Proof: also similar to discrete case.
Exercise: try proving these yourself.

Variance Target shooting Target shooting II Variance is defined exactly like it is for the discrete case. Suppose an archer always hits a circular target with 1 meter radius, and the exact point that he hits is distributed uniformly across the target. What is the distribution the distance between his arrow and CDF: the center (call this r.v. X)? $Var(X) = E[(X - E[X])^2]$ $= E[X^2] - E[X]^2$ $F_{Y}(t) = Pr[Y \le t] = \begin{cases} 0 & \text{for } t < 0 \\ t^{2} & \text{for } 0 \le t \le 1 \\ 1 & \text{for } t > 1 \end{cases}$ The standard properties for variance hold in the continuous case as well. PDF? $Var(aX) = a^2 Var(X)$ Probability that arrow is closer than t to the center? $f_{Y}(t) = F_{Y}(t)' = \begin{cases} 2t & \text{for } 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$ $Pr[X \le t] = \frac{\text{area of small circle}}{\text{area of dartboard}}$ For independent r.v. X, Y: Var(X + Y) = Var(X) + Var(Y) $= \frac{\pi t^2}{\pi} = t^2.$ 11 12 Target shooting III Shifting & Scaling Another way of attacking the same problem: what's the probability of Let $f_X(x)$ be the pdf of X and Y = a + bX where b > 0. Then hitting some ring with inner radius t and outer radius $t + \delta$ for small δ ? $Pr[Y \in (y, y + \delta)] = Pr[a + bX \in (y, y + \delta)]$ $= Pr[X \in (\frac{y-a}{b}, \frac{y+\delta-a}{b})]$ $= Pr[X \in (\frac{y-a}{b}, \frac{y-a}{b} + \frac{\delta}{b})]$ **Continuous Distributions** $= f_X(\frac{y-a}{b})\frac{\delta}{b}.$ Area of circle: π Left-hand side is $f_{Y}(y)\delta$. Hence, Area of ring: $\pi((t+\delta)^2 - t^2) = \pi(t^2 + 2t\delta + \delta^2 - t^2) = \pi(2t\delta + \delta^2) \approx \pi 2t\delta$ $f_Y(y) = \frac{1}{h} f_X(\frac{y-a}{h}).$ Probability of hitting the ring: $2t\delta$. PDF for *t* < 1: 2*t* 15 14

Uniform Distribution: CDF and PDF

PDF is constant over some interval [a, b], zero outside the interval. What's the value of the constant in the interval?

$$\int_{-\infty}^{\infty} k dt = \int_{a}^{b} k dt = b - a = 1$$

so PDF is 1/(b - a) in [a, b] and 0 otherwise. CDF?

0 for t < a, (t - a)/(b - a) for a < t < b, and 1 for t > b.

Exponential Distribution: Motivation

Continuous-time analogue of the geometric distribution.

How long until a server fails? How long does it take you to run into pokemon?

Can't "continuously flip a coin". What do we do?

Look at geometric distributions representing processes with higher and higher granularity.

Uniform Distribution: CDF and PDF, Graphically $f_X(t) = \begin{cases} 1/(b-a) & a < t < b \\ 0 & \text{otherwise} \end{cases} \qquad F_X(t) = \begin{cases} 0 & t < a \\ (t-a)/(b-a) & a < t < b \end{cases}$ Unife $I \longrightarrow F_X(x) \longrightarrow$ 1/(b - a)--Ь 17

Exponential Distribution: Motivation II

16

19

Suppose a server fails with probability λ every day. Probability that server fails on the same day as time t:

$(1-\lambda)^{\lceil t \rceil -1}\lambda$

More precision! What's the probability that it fails in a 12-hour period? $\lambda/2$ if we assume that there is no time that it's more likely to fail than another.

Generally: server fails with probability λ/n during any 1/n-day time period.

 $\left(1-\frac{\lambda}{n}\right)^{\lceil tn\rceil-1}\frac{\lambda}{n}$

Probability that server fails on the same 1/n-day time period as t:

$$E[X] = \int_{a}^{b} \frac{t}{b-a} dt = \frac{1}{2} \frac{b^{2} - a^{2}}{b-a} = \frac{b+a}{2}$$

Variance?
$$Var[X] = E[X^{2}] - E[X]^{2}$$
$$= \int_{a}^{b} \frac{t^{2}}{b-a} dt - (\frac{b+a}{2})^{2}$$
$$= \frac{t^{3}}{3(b-a)} |_{a}^{b} - (\frac{b+a}{2})^{2}$$
$$= \frac{(a-b)^{2}}{12}$$

Exponential Distribution: Motivation III

Expectation?

$$\left(1-\frac{\lambda}{n}\right)^{\lceil tn\rceil-1}\frac{\lambda}{n}$$

 $Var[X] = E[X^2] - E[X]^2$

 $= \int_a^b \frac{t^2}{b-a} dt - \left(\frac{b+a}{2}\right)^2$ $= \frac{t^3}{3(b-a)}\Big|_a^b - \left(\frac{b+a}{2}\right)^2$

What happens when we try to take *n* to ∞ ?

Uniform Distribution: Expectation and Variance

Probability goes to zero...but we can make a PDF out of this! Remove the width of the interval (1/n) and take the limit as $n \to \infty$ to get:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{\lceil tn \rceil - 1} \lambda = \lambda \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^{tn - 1} = \frac{\lambda e^{-\lambda t}}{n}$$

This is the PDF of the exponential distribution!

20

21

Exponential Distribution: PDF and CDF

Expectation & Variance of the Exponential Distribution

 $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x}$ for $0 \le x \le 1$. Thus,

 $E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$

Integration by parts:

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}$$

So: expectation is $E[X] = \frac{1}{\lambda}$. Variance: $1/\lambda^2$

Normal Distribution

Properties of the Exponential Distribution: Memorylessness

Similar to memorylessness for geometric distributions.

"If your server doesn't fail today, it's in the same state as it was before today."

Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

Normal Distribution: Properties

23

PDF: $f_X(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$

CDF: involves an integral with no nice closed form (often expressed in terms of "erf", the error function). Won't discuss it here.

Expectation: μ (notice that PDF is symmetric around μ).

Variance: σ^2 (fairly straightforward integration)

Scaling/Shifting: if $X \sim \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$, then $Y \sim \mathcal{N}(\mu, \sigma^2)$.

"68-95-99.7 rule": for a normal distribution, roughly 68% of the probability mass lies within one standard deviation of the mean, roughly 95% within two standard deviations, and 99.7% within three standard deviations.

"n-sigma events" - sometimes used as a shorthand to describe the probability of the event as being the same probability of something falling over *n* standard deviations away from the mean in a normal distribution.

How Many Sigmas, Exactly?

Range	Expected Fraction of Population Inside Range	Approximate Expected Frequency Outside Range	Approximate Frequency for Daily Event
μ ± 0.5σ	0.382 924 922 548 026	2 in 3	Four times a week
$\mu\pm\sigma$	0.682 689 492 137 086	1 in 3	Twice a week
μ ± 1.5σ	0.866 385 597 462 284	1 in 7	Weekly
$\mu \pm 2\sigma$	0.954 499 736 103 642	1 in 22	Every three weeks
μ ± 2.5σ	0.987 580 669 348 448	1 in 81	Quarterly
$\mu \pm 3\sigma$	0.997 300 203 936 740	1 in 370	Yearly
μ ± 3.5σ	0.999 534 741 841 929	1 in 2149	Every six years
$\mu \pm 4\sigma$	0.999 936 657 516 334	1 in 15 787	Every 43 years (twice in a lifetime)
μ ± 4.5σ	0.999 993 204 653 751	1 in 147 160	Every 403 years (once in the modern era)
$\mu \pm 5\sigma$	0.999 999 426 696 856	1 in 1 744 278	Every 4776 years (once in recorded history)
μ ± 5.5σ	0.999 999 962 020 875	1 in 26 330 254	Every 72 090 years (thrice in history of modern humankind)
$\mu\pm 6\sigma$	0.999 999 998 026 825	1 in 506 797 346	Every 1.38 million years (twice in history of humankind)
μ±6.5σ	0.999 999 999 919 680	1 in 12 450 197 393	Every 34 million years (twice since the extinction of dinosaurs
$\mu\pm7\sigma$	0.999 999 999 997 440	1 in 390 682 215 445	Every 1.07 billion years (a quarter of Earth's history)
μ±xσ	$\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)$	1 in $\frac{1}{1-\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)}$	Every $\frac{1}{1-\operatorname{erf}\left(\frac{x}{n}\right)}$ days

Central Limit Theorem

Basically: if you take a lot of i.i.d random variables from any* distribution with zero mean and the same variance and sum them up, the sum will converge to a random Gaussian with the same mean and variance.

Suppose X1, X2, ... are i.i.d. random variables with expectation μ and variance $\sigma^2.$ Let

$$S_n := \frac{A_n - n\mu}{\sigma\sqrt{n}} = \frac{(\sum_i X_i) - n\mu}{\sigma\sqrt{n}}$$

Then S_n tends towards $\mathcal{N}(0, 1)$ as $n \to \infty$.

Or:

$$\Pr[S_n \le a] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx$$

Proof: EE126

Sum of Bernoullis (binomial) tends towards normal!

Cauchy

28

Augustin-Louis Cauchy (1789-1857)

Practically invented complex analysis. Made fundamental contributions to calculus and group theory.

"More concepts and theorems have been named for Cauchy than for any other mathematician."

Was also a baron because he tutored a duke... who ended up hating math.

Summary

Continuous probability: translation of discrete probability to a continuous sample space with an infinite number of events.

Concepts of variance, expectation, etc. translate to continuous too.

Geometric distribution \rightarrow exponential distribution.

Binomial distribution \rightarrow normal distribution.

Central limit theorem: everything converges to normal if we take enough samples

30

32

Definition

Actually first written about by Poisson in 1824. Cauchy became associated with it in 1853!

Suppose I have a wall on the *x*-axis. Stand at (0,1) and point a laser at a uniform random angle such that the laser hits the wall.

What is the distribution of the point on the wall?

 $\tan\theta=t$

31

29

Today's Gig: Cauchy Distribution

Properties

PDF:

Expectation?

$$\int_{-\infty}^{\infty} \frac{t}{\pi(1+t^2)} dt = \lim_{a \to \infty} \int_{-a}^{a} \frac{t}{\pi(1+t^2)} dt = 0$$
$$= \lim_{a \to \infty} \int_{-a}^{2a} \frac{t}{\pi(1+t^2)} dt \neq 0$$

 $\frac{1}{\pi(1+t^2)}$

Expectation doesn't exist!

If you try to estimate the expectation by sampling points and averaging, you'll get crazy results.

Variance doesn't exist either.

Main takeaway: there are some really badly-behaved distributions out there.

