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1. Confidence intervals
2. Chernoff
3. Probabilistic Method



Reminders

� Quiz due tomorrow.
� Quiz coming out today.
� Midterm re-grade requests closing tomorrow.
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Estimation p̂ is within 0.01 of the true p, with probability at least
95%.

Pr [|p̂−p|≥ ε]≤ p(1−p)
nε2

We want to make Pr [|p̂−p|≤ 0.01] at least 0.95.

Same as Pr [|p̂−p|≥ 0.01] at most 0.05.

It’s sufficient to have p(1−p)
nε2 ≤ 0.05 or n ≥ 20p(1−p)

ε2 .

p(1−p) is maximized for p = 0.5. Therefore it’s sufficient to
have n ≥ 5

ε2 .

For ε = 0.01 we get that n ≥ 50000 coins are sufficient.
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Markov: Only works for non-negative random variables.

Pr [X ≥ t ]≤ E [X ]

t

Chebyshev:

Pr [|X −E [X ]|≥ t ]≤ Var [X ]

t2

Chernoff:
The good: Exponential bound
The bad: Sum of mutually independent random variables.
The ugly: People get scared the first time they see the bound.
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Markov: Pr [X ≥ a]≤ E [X ]
a

Apply Markov to etX !

e∑something = ∏esomething

Product of numbers smaller than 1 becomes small really fast!

Pr [X ≥ a] = Pr [etX ≥ eta]≤ E [etX ]

eta

What is E [etX ]?
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Chernoff:

Pr [X ≥ (1+δ )500]≤
�
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(1+δ )500 = 600 =⇒ δ = 1
5 = 0.2:

Pr [X ≥ 600]≤
�

e0.2

(1+0.2)(1+0.2)

�500

= 0.000083...
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Pr [p /∈ [p̂− ε, p̂+ ε]]≤ e− nε2
3 +e− nε2

2

For our application: ε = 0.01. The bound should be smaller
than .05

e− n0.012
3 +e− n0.012

2 ≤ 0.05

Wolframalpha says: n ≥ 95436. Worse than Chebyshev...
Welcome to my life
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Well, that was a waste of time...

If you want the probability of failure to be smaller than 1%:

Chebyshev: 250,000 coins.

Chernoff: ≈ 141,000 coins.

Yay!
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If you want to be within 0.01 of the truth:

x axis is number of coins. y -axis is probability of failure.

Red function is Chebyshev.

For a million coins: Chebyshev: 0.0025

Chernoff: 3.33824∗10−15
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6 volunteers

Blue edge if they know each other.

Red edge if they don’t know each other.

There is always a group of 3 that either all know each other, or
all are strangers.

There always exists a monochromatic triangle.
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How can we show that things exist?

Say I have a group of 1000 people.

Is there a ”monochromatic” group of 3? What about 10? What
about 20?

How big can these monochromatic cliques be???

And how would you prove it?

Try all colorings?? Good luck with that...

Number of colorings: 2(
1000

2 ) ≈ 3.039∗10150364.

Commonly accepted for the number of particles in the
observable universe ≈ 1080.
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Say I want to prove that there is a coloring for the clique with
1000 vertices such that there is no monochromatic clique of
size, say, 20.

Trying all coloring is pointless.

Induction? Nah... It shouldn’t be true if I replace 1000 with
something much bigger.

Contradiction? Ok, say there exists a monochromatic clique.
Now what?
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The probabilistic method

Step 1: Randomly color the graph. Each edge is colored red
w.p. 0.5 and blue w.p. 0.5

Step 2: Compute an upper bound on the probability that there
exists a monochromatic clique of size k .

Hey! I did this in a homework already!!!

Step 3: See if that probability is strictly smaller than 1.
If the probability that there exists a monochromatic clique is

strictly less than 1, that means that the probability there isn’t
one is strictly bigger than 0.

Well, that means that there is a coloring with no
monochromatic clique of size k !
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The probabilistic method

If I do something at random, and the probability I fail is strictly
less than 1, that means that there is a way to succeed!!
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The probabilistic method
Paul Erdős

Many quotes:
My brain is open!
Another roof, another proof.
It is not enough to be in the right place at the right time. You
should also have an open mind at the right time.
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� Chernoff.
� The Probabilistic Method.


