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Lecture 2: Proofs!

1. Direct proof

2. by Contraposition
3. by Contradiction
4. by Cases
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Quick Background and Notation.

Integers closed under addition.
abeZ — a+beZ
alb means “a divides b”.
2|47 Yes!
7|123? No!
4]2? No!
Formally: alb <= 3q € Z where b= aq.
3|15 since for g =5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and itself.
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Direct Proof.

Theorem: For any a,b,c € Z, if alb and a|c then a|(b— ¢).

Proof: Assume a|b and alc
b=aqand c=aq where q,q' € Z

b-c=aq—aq =a(q—q') Done?
(b—c)=a(g—q') and (g—q') is an integer so
al(b-rc) O

Works for Va, b, c?
Argument applies to every a,b,c € Z.

Direct Proof Form:
Goal: P —= Q
Assume P.

Therefore Q.



Another direct proof.

Let D5 be the 3 digit natural numbers.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum:1-2+1=0.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 Alt Sum: 1-2+1 =0. Divis. by 11.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum:6-0+5=11



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 Alt Sum: 6—-0+5=11 Divis. by 11.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 Alt Sum: 6—-0+5=11 Divis. by 11. As is 605



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne Ds,



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.

Assume: Alt. sum:



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.

Assume: Alt. sum: a—b+c



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.

Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n,



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a-+ b is integer.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+bis integer. — 11|n. O



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+bis integer. — 11|n. O

Direct proof of P = Q:
Assumed P: 11la—b+c.



Another direct proof.

Let D5 be the 3 digit natural numbers.

Theorem: For n € Ds, if the alternating sum of digits of n is divisible by 11, than 11|n.

Vn e Ds,(11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum: 6—0+5=11 Divis. by 11. As is 605 = 11(55)

Proof: For ne€ D3, n=100a+ 10b+ c, for some a, b, c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-+ 11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+bis integer. — 11|n. O

Direct proof of P = Q:
Assumed P: 11|a—b+c. Proved Q: 11|n.



Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n



Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n

Is converse a theorem? Vne D3, (11|n) = (11]alt. sum of digits of n)



Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n
Is converse a theorem? Vne D3, (11|n) = (11]alt. sum of digits of n)

Yes?



Thm: Vn € D3, (11]alt. sum of digits of n) = 11|n
Is converse a theorem? Vne D3, (11|n) = (11]alt. sum of digits of n)

Yes? No?



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)

Proof:



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)

Proof: Assume 11|n.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c) =11k



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—11b



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a—11b =
a—-b+c=11(k—9a-b)



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a—11b =
a-b+c=11(k—9a—b) =
a-b+c=11¢



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢where /= (k—9a—b)c Z

That is 11|alternating sum of digits. O



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ

That is 11|alternating sum of digits. O

Note: similar proof to other. In this case every =—> is <



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ

That is 11|alternating sum of digits. O
Note: similar proof to other. In this case every =—> is <

Often works with arithmetic properties ...



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ

That is 11|alternating sum of digits. O
Note: similar proof to other. In this case every =—> is <

Often works with arithmetic properties ...
...not when multiplying by 0.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ

That is 11|alternating sum of digits. O
Note: similar proof to other. In this case every =—> is <

Often works with arithmetic properties ...
...not when multiplying by 0.

We have.



Another Direct Proof.

Theorem: Vne D3, (11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k—-99a—-11b =
a-b+c=11(k—9a—b) =
a—b+c=11¢{where /= (k—9a—b)cZ

That is 11|alternating sum of digits. O
Note: similar proof to other. In this case every =—> is <

Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: Vne N',(11]alt. sum of digits of n) <= (11|n)



Proof by Contraposition



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.

n=2k+1



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.

n =2k + 1 what do we know about d?



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q — —P



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even. d = 2k.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even. d = 2k.

d|n so we have



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd = q(2k)



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.

Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd = q(2k) = 2(kq)



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.
Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd = q(2k) = 2(kq)

nis even.



Proof by Contraposition

Thm: For n€ Z* and d|n. If nis odd then d is odd.
n=2k+ 1 what do we know about d?

What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P =— Q.
Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd = q(2k) = 2(kq)

nis even. =P O



Another Contraposition...




Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

n? is even, n? = 2k, ...



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

n? is even, n? = 2k, .../2k even?



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)

P="n?iseven. ...



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)

P="n?iseven. ... -P="n?is odd’



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P='n?iseven. ........ -P ="r? is odd’

Q="'niseven ........



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P='n?iseven. ........ -P ="r? is odd’

Q='niseven ........... —=Q="nis odd’



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P="nr?iseven. ... -P="nr?is odd’
Q="niseven ... -Q="nis odd’

Prove -Q = —P: nis odd = n? is odd.



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P="nr?iseven. ... -P="nr?is odd’
Q="niseven ... -Q="nis odd’

Prove -Q = —P: nis odd = n? is odd.

n=2k+1



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q) =(-Q = —P)
P="nr?iseven. ... -P ="r? is odd’
Q="'niseven .......... -Q="nis odd’

Prove ~-Q = —P: nis odd = n?is odd.

n=2k+1

M =4k? + 4k +1=2(2k? + k) +1.



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P="nr?iseven. ... -P="nr?is odd’
Q="niseven ... -Q="nis odd’

Prove -Q = —P: nis odd = n? is odd.
n=2k+1
M =4k? + 4k +1=2(2k? + k) +1.

n? =2/+1 where / is a natural number..



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P — Q)= (-Q = —P)
P="nr?iseven. ... -P="nr?is odd’
Q="niseven ... -Q="nis odd’

Prove ~-Q = —P: nis odd = n?is odd.
n=2k+1

P = 4k% + 4k +1=2(2k? +- k) +1.

m? =241 where / is a natural number..

... and n? is odd!



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)
P="n?iseven. ... =P ="n?is odd’
Q="'niseven .......... -Q="nis odd’

Prove ~-Q = —P: nis odd = n?is odd.
n=2k+1

P = 4k% + 4k +1=2(2k? +- k) +1.

m? =241 where / is a natural number..

... and n? is odd!

-Q = -P



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)
P="n?iseven. ... =P ="n?is odd’
Q="'niseven .......... -Q="nis odd’

Prove ~-Q = —P: nis odd = n?is odd.
n=2k+1

P = 4k% + 4k +1=2(2k? +- k) +1.

m? =241 where / is a natural number..

... and n? is odd!

-Q = -PsoP = Qand ...



Another Contraposition...

Lemma: For every nin N, n? is even = nis even. (P = Q)

Proof by contraposition: (P = Q)=(-Q = —P)
P="n?iseven. ... =P ="n?is odd’
Q="'niseven .......... -Q="nis odd’

Prove ~-Q = —P: nis odd = n?is odd.
n=2k+1

P = 4k% + 4k +1=2(2k? +- k) +1.

m? =241 where / is a natural number..

... and n? is odd!

-Q = -PsoP = Qand ... O



Proof by contradiction:form

Theorem: /2 is irrational.



Proof by contradiction:form

Theorem: /2 is irrational.

Must show:



Proof by contradiction:form

Theorem: /2 is irrational.

Must show: For every a,b € Z,



Proof by contradiction:form

Theorem: /2 is irrational.

Must show: For every a,be Z, ()% £ 2.



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.

A simple property (equality) should always “not” hold.



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.

Proof by contradiction:



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.

A simple property (equality) should always “not” hold.
Proof by contradiction:

Theorem: P.



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.

-P



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.

—\PﬁF‘H



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.

P = Py...



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.

-P—=— Pi--- = R



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R

=/?



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R

-P = @



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R

P = Q-



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R

-P = Q- = -R



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R
-P = Qy--- = -R

-P = RA-R



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R
-P = Qy--- = -R

-P — RA-R=False



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R
-P = Qy--- = -R
-P =— RA-R=False

Contrapositive: True = P.



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R
-P = Qy--- = -R
-P =— RA-R=False

Contrapositive: True = P. Theorem P is proven.



Proof by contradiction:form

Theorem: /2 is irrational.
Must show: For every a,be Z, ()% £ 2.
A simple property (equality) should always “not” hold.
Proof by contradiction:
Theorem: P.
-P—=— Pi--- = R
-P = Qy--- = -R
-P =— RA-R=False

Contrapositive: True = P. Theorem P is proven. O



Contradiction

Theorem: /2 is irrational.



Contradiction

Theorem: /2 is irrational.

Assume —P:



Contradiction

Theorem: /2 is irrational.

Assume —P: v2=a/bforabec Z.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a

2% = &



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a

2% = &

a°iseven = ais even.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.
V2b=a
2% = &

a°iseven = ais even.

a = 2k for some integer k



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.
V2b=a
207 = & = 4K>

a°iseven = ais even.

a = 2k for some integer k



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.
V2b=a
2% = & = 4K>

a°iseven = ais even.

a = 2k for some integer k

b? = 2k?



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a
2b° = &% = 4k?
2% iseven = ais even.
a = 2k for some integer k
b? = 2k?

b?is even = bis even.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a
2b° = &% = 4k?
2% iseven = ais even.
a = 2k for some integer k
b? = 2k?

b?is even = bis even.

a and b have a common factor.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a
2b° = &% = 4k?
2% iseven = ais even.
a = 2k for some integer k
b? = 2k?

b?is even = bis even.

a and b have a common factor. Contradiction.



Contradiction

Theorem: /2 is irrational.
Assume —P: v2=a/bforabec Z.

Reduced form: a and b have no common factors.

V2b=a
2b° = &% = 4k?
2% iseven = ais even.
a = 2k for some integer k
b? = 2k?

b?is even = bis even.

a and b have a common factor. Contradiction.



Proof by contradiction: example

Theorem: There are infinitely many primes.



Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: p1,...,pk.

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: p1,...,pk.

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.
» pdivides both x = p;-p2---px and q,



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.
» pdivides both x = p; - p2--- px and q, and divides q — x,



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.
» pdivides both x = p; - p2--- px and q, and divides q — x,

© = plg-x



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.
» pdivides both x = p; - p2--- px and q, and divides q — x,

c = plg-x = p<qg-—x



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.
» pdivides both x = p; - p2--- px and q, and divides q — x,

s = plg—x = p<qg-—-x=1.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.

» pdivides both x = p; - p2--- px and q, and divides q — x,
s = plg—x = p<qg-—-x=1.

*sop<i.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.

» pdivides both x = p; - p2--- px and q, and divides q — x,
s = plg—x = p<qg-—-x=1.

* so p<1. (Contradicts R.)



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

» Consider
q=(p1xp2x-px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.

» pdivides both x = p; - p2--- px and q, and divides q — x,
s = plg—x = p<qg-—-x=1.

* so p<1. (Contradicts R.)

The original assumption that “the theorem is false” is false,
thus the theorem is proven.



Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof:

» Assume finitely many primes: py,..., P-

« Consider
q=(p1 xp2x--px)+1.

» g cannot be one of the primes as it is larger than any p;.
» q has prime divisor p ("p > 1” = R ') which is one of p;.

» pdivides both x = p; - p2--- px and q, and divides q — x,
s = plg—x = p<qg-—-x=1.

* so p<1. (Contradicts R.)

The original assumption that “the theorem is false” is false,
thus the theorem is proven. O



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
* No.



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
* No.

» The chain of reasoning started with a false statement.



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
* No.

» The chain of reasoning started with a false statement.

Consider example..



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
» No.
» The chain of reasoning started with a false statement.

Consider example..

* 2x3x5x7x11x13+1=30031 =59 x 509



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
* No.

» The chain of reasoning started with a false statement.

Consider example..

*+ 2x3x5x7x11x134+1=230031 =59 x 509
» There is a prime in between 13 and g = 30031 that divides q.



Product of first k primes..

Did we prove?

» “The product of the first k primes plus 1 is prime.”
* No.

» The chain of reasoning started with a false statement.

Consider example..

*+ 2x3x5x7x11x134+1=230031 =59 x 509
» There is a prime in between 13 and g = 30031 that divides q.

» Proof assumed no primes in between py and q.
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Theorem: There exist irrational x and y such that x” is rational.
Letx =y =+2.

Case 1: x¥ = \/5‘/E is rational. Done!
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Thus, we have irrational x and y with a rational x” (i.e., 2).
One of the cases is true so theorem holds. O

Question: Which case holds? Don’t know!!!
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Don’t assume what you want to prove!
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Theorem: 1 =2
Proof: For x =y, we have
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Also: Multiplying inequalities by a negative.

P — Qdoes not mean Q — P.
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Teacher: Hello class.
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Gauss: It's %2(101) or 5050!
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