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Lecture 2: Proofs!

1. Direct proof

2. by Contraposition

3. by Contradiction

4. by Cases
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a,b ∈ Z =⇒ a+b ∈ Z

a|b means “a divides b”.

2|4? Yes!

7|23? No!

4|2? No!

Formally: a|b ⇐⇒ ∃q ∈ Z where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is prime if it is divisible only by 1 and itself.
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CS70: Note 3. Induction!

1. The natural numbers.

2. 5 year old Gauss.

3. ..and Induction.

4. Simple Proof.
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