CS70: Discrete Math and Probability

June 21, 2016

- 1. Direct proof
- 2. by Contraposition
- 3. by Contradiction
- 4. by Cases

Quick Background and Notation.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

 $a, b \in Z \implies a + b \in Z$

a|*b* means "a divides b".

2|4?

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23?

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2?

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5,

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq'

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q')

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done?

(b-c) = a(q-q')

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | (b - c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c = aq - aq' = a(q-q') Done?

(b-c) = a(q-q') and (q-q') is an integer so

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so a|(b - c)

Theorem: For any $a, b, c \in Z$, if a | b and a | c then a | (b - c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so a|(b - c)

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b-c = aq - aq' = a(q - q')$ Done?
 $(b-c) = a(q - q')$ and $(q - q')$ is an integer so
 $a|(b-c)$
Works for $\forall a, b, c$?

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q - q') and (q - q') is an integer so a|(b-c)Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq-aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$. Direct Proof Form:

Goal: $P \implies Q$

Assume P.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume *a*|*b* and *a*|*c* b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a, b, c$? Argument applies to every $a, b, c \in Z$. Direct Proof Form: Goal: $P \implies Q$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q-q') Done? (b-c) = a(q-q') and (q-q') is an integer so a|(b-c)Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$. Direct Proof Form: Goal: $P \implies Q$

Assume P.

. . .

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

```
Proof: Assume a|b and a|c
  b = aq and c = aq' where q, q' \in Z
b-c = aq - aq' = a(q-q') Done?
(b-c) = a(q-q') and (q-q') is an integer so
  a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
Direct Proof Form:
 Goal: P \implies Q
  Assume P.
  Therefore Q.
```

Another direct proof.

Let D_3 be the 3 digit natural numbers.
Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

```
\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n
```

Examples:

n = 121

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|*n*.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is *n*,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, than 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a+11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n. Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

Thm: $\forall n \in D_3$, (11 alt. sum of digits of n) \implies 11 |n|

Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Yes?

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Yes? No?

Theorem: $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Theorem: $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Proof:

Theorem: $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$

Proof: Assume 11|*n*.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|*n*.

n = 100a + 10b + c = 11k

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|*n*.

 $n = 100a + 10b + c = 11k \implies$ 99a + 11b + (a - b + c) = 11k Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b$$
Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b)$$

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell$$

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Proof: Assume 11|*n*.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in N'$, (11 alt. sum of digits of n) \iff (11 |n)

Proof by Contraposition

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If *n* is odd then *d* is odd.

n = 2k + 1 what do we know about d?

n = 2k + 1 what do we know about d?

What to do?

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume ¬*Q*

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k)

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d n so we have

n = qd = q(2k) = 2(kq)

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d n so we have

n = qd = q(2k) = 2(kq)

n is even.

n = 2k + 1 what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. $\neg P$

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

 n^2 is even, $n^2 = 2k$, ...

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

 n^2 is even, $n^2 = 2k, \dots \sqrt{2k}$ even?

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

 $P = n^2$ is even.'

Lemma: For every *n* in *N*, n^2 is even \implies *n* is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Q = 'n is even'
Another Contraposition...

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + k) + 1.$

 $n^2 = 2l + 1$ where *l* is a natural number..

... and n^2 is odd!

 $\neg Q \implies \neg P$

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd!

 $\neg Q \implies \neg P \text{ so } P \implies Q \text{ and } ...$

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + k) + 1.$ $n^2 = 2l + 1$ where *l* is a natural number. ... and n^2 is odd!

 $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Must show:

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$,

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$

 $\neg P$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$

 $\neg P \implies Q_1$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \implies P_1 \cdots \implies R$$

 $\neg P \implies Q_1 \cdots$

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \implies P_1 \cdots \implies R$

 $\neg P \implies Q_1 \cdots \implies \neg R$

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$

 $\neg P \implies Q_1 \cdots \implies \neg R$

 $\neg P \implies R \land \neg R$

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$

 $\neg P \implies R \land \neg R \equiv False$

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$

 $\neg P \implies R \land \neg R \equiv False$

Contrapositive: True \implies *P*.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$

 $\neg P \implies R \land \neg R \equiv False$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$

 $\neg P \implies R \land \neg R \equiv False$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

 $b^2 = 2k^2$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even.

a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

• Assume finitely many primes: p_1, \ldots, p_k .

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

• q cannot be one of the primes as it is larger than any p_i .

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x|$

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x$

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x=1.$

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x=1.$
- so *p* ≤ 1.

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x=1.$
- so *p* ≤ 1. (Contradicts *R*.)

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x=1.$
- so *p* ≤ 1. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider

$$q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $\implies p|q-x \implies p \leq q-x=1.$
- so *p* ≤ 1. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

• "The product of the first k primes plus 1 is prime."

- "The product of the first k primes plus 1 is prime."
- No.

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- "The product of the first *k* primes plus 1 is prime."
- No.
- · The chain of reasoning started with a false statement.

Consider example..

• $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.

- "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

-1

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.
Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.Case 2: a even, b odd: even - even + odd = even. Not possible.Case 3: a odd, b even: odd - even + even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.Case 2: a even, b odd: even - even + odd = even. Not possible.Case 3: a odd, b even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.Case 2: a even, b odd: even - even + odd = even. Not possible.Case 3: a odd, b even: odd - even + even = even. Not possible.Case 4: a even, b even: even - even + even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible. Case 2: a even, b odd: even - even +odd = even. Not possible. Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

•

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^y =$$

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

•

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

•

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

.

Theorem: There exist irrational *x* and *y* such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^{y} (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Proof: Assume 3 = 4.

Proof: Assume 3 = 4.

Start with 12 = 12.

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!
Theorem: 1 = 2Proof: **Theorem:** 1 = 2**Proof:** For x = y, we have **Theorem:** 1 = 2**Proof:** For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 1 = 2 **Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$

$$x(x-y) = (x+y)(x-y)$$

Theorem: 1 = 2 **Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y)

x = (x + y)

Theorem: 1 = 2Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y)x = 2x Theorem: 1 = 2 **Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Theorem: 1 = 2
Proof: For
$$x = y$$
, we have
 $(x^2 - xy) = x^2 - y^2$
 $x(x - y) = (x + y)(x - y)$
 $x = (x + y)$
 $x = 2x$
 $1 = 2$

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

Theorem: 1 = 2 Proof: For x = y, we have $(x^{2} - xy) = x^{2} - y^{2}$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \implies Q$ does not mean $Q \implies P$.

Direct Proof:

Direct Proof: To Prove: $P \implies Q$.

By Contraposition:

By Contraposition: To Prove: $P \implies Q$

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction:

17

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction: To Prove: P Assume $\neg P$. Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. By Contradiction: To Prove: P Assume $\neg P$. Prove False . By Cases: informal.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

By Cases: informal.

Universal: show that statement holds in all cases. Existence: used cases where one is true.

Careful when proving!

Careful when proving!

Don't assume the theorem.

Careful when proving!

Don't assume the theorem. Divide by zero.

Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse.

Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse. ...

- 1. The natural numbers.
- 2. 5 year old Gauss.
- 3. .. and Induction.
- 4. Simple Proof.

The naturals.

The naturals.

The naturals.

0, 1,

0, 1, 2,

0, 1, 2, 3,

0, 1, 2, 3,

···,

0, 1, 2, 3, ..., *n*, *n*+1, *n*+2,*n*+3,

The naturals.

0, 1, 2, 3, ..., *n*, *n*+1, *n*+2,*n*+3, ...

A formula.

Teacher: Hello class.

Teacher: Hello class. Teacher: Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100.

Gauss: It's

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$

Teacher: Hello class. Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Child Gauss: $(\forall n \in N)(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

 $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works!

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works! Induction Step.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof?

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0
Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for n = k

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$...

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$...

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$...

Predicate, P(n), True for all natural numbers!

Child Gauss: $(\forall n \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$$

How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 1 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$... true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$...

Predicate, P(n), True for all natural numbers! **Proof by Induction.**