CS70: Discrete Math and Probability

June 21, 2016

Direct Proof.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

(b-c) = a(q-q') and (q-q') is an integer so

a|(b-c)

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form: Goal: $P \implies Q$ Assume P.

Therefore Q.

Lecture 2: Proofs!

Direct proof
 by Contraposition
 by Contradiction
 by Cases

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$ Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a+11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n.$

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

Quick Background and Notation.

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

ab means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

2

5

The Converse

1

4

Thm: $\forall n \in D_3, (11|alt. sum of digits of n) \implies 11|n$

Is converse a theorem? $\forall n \in D_3, (11|n) \implies (11|alt. sum of digits of n)$ Yes? No?

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow$ $99a + 11b + (a - b + c) = 11k \Longrightarrow$ $a - b + c = 11k - 99a - 11b \Longrightarrow$ $a - b + c = 11(k - 9a - b) \Longrightarrow$ $a - b + c = 11(k + 9a - b) \Longrightarrow$ a - b + c = 11k where $l = (k - 9a - b) \in Z$ That is 11|alternating sum of digits. Note: similar proof to other. In this case every \Longrightarrow is \Leftrightarrow Often works with arithmetic propertiesnot when multiplying by 0. We have.

Theorem: $\forall n \in N'$, (11 alt. sum of digits of n) \iff (11|n)

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: **Theorem:** *P*. $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R \equiv False$ Contrapositive: True $\implies P$. Theorem *P* is proven.

Proof by Contraposition

Thm: For $n \in Z^+$ and $d n$. If n is odd then d is odd.	
n = 2k + 1 what do we know about d?	
What to do?	
Goal: Prove $P \Longrightarrow Q$.	
Assume −Q and prove ¬P.	
Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.	
Proof: Assume $\neg Q$: <i>d</i> is even. $d = 2k$.	
<i>d</i> <i>n</i> so we have	
n = qd = q(2k) = 2(kq)	
n is even. ¬P	

Contradiction

```
Theorem: \sqrt{2} is irrational.

Assume \neg P: \sqrt{2} = a/b for a, b \in Z.

Reduced form: a and b have no common factors.

\sqrt{2}b = a

2b^2 = a^2 = 4k^2

a^2 is even \implies a is even.

a = 2k for some integer k

b^2 = 2k^2

b^2 is even \implies b is even.

a and b have a common factor. Contradiction.
```

Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k, \dots \sqrt{2k}$ even? **Proof by contraposition:** $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + k) + 1.$ $n^2 = 2I + 1$ where *I* is a natural number. ... and n² is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ... Proof by contradiction: example Theorem: There are infinitely many primes. Proof: • Assume finitely many primes: *p*₁,...,*p*_k. Consider $q = (p_1 \times p_2 \times \cdots \otimes p_k) + 1.$ • q cannot be one of the primes as it is larger than any p_i. q has prime divisor p ("p > 1" = R) which is one of p_i. • *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q - x, • $\implies p|q-x \implies p \leq q-x=1.$ • so *p* ≤ 1. (**Contradicts** *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

10

11

8

Product of first k	primes
--------------------	--------

Did we prove?

• "The product of the first k primes plus 1 is prime."

No.

• The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and *q* = 30031 that divides *q*.
- Proof assumed no primes in between pk and q.

Be careful.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{b}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^{5} - \frac{a}{b} + 1 = 0$$

 $a^5 - ab^4 + b^5 = 0$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible. Case 2: a even, b odd: even - even + odd = even. Not possible. Case 3: a odd, b even: dod - even + even = even. Not possible. Case 4: a even, b even: even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Be really careful!

12

15

Multiply by b⁵,

Theorem: $1 = 2$ Proof: For $x = y$, we have	
$(x^{2} - xy) = x^{2} - y^{2}$ x(x-y) = (x + y)(x - y) x = (x + y) x = 2x	
1 = 2	
Dividing by zero is no good.	
Also: Multiplying inequalities by a negative.	
$P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.	

Proof by cases.

.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

• New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2$$

14

17

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q.

By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

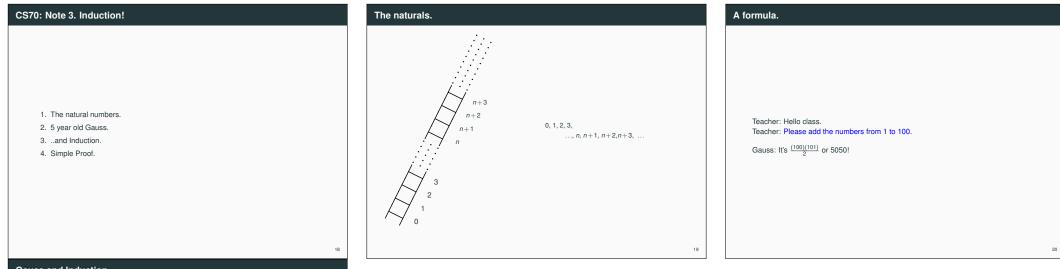
By Contradiction: To Prove: P Assume $\neg P$. Prove False .

By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving! Don't assume the theorem. Divide by zero.Watch converse. ...

16

13



Gauss and Induction

Child Gauss: $(\forall n \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof? Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Is predicate, P(n) true for n = k + 1? $\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}$. How about k + 2. Same argument starting at k + 1 works! Induction Step. $P(k) \Longrightarrow P(k+1)$. Is this a proof? It shows that we can always move to the next step. Need to start somewhere. P(0) is $\sum_{i=0}^{n} i = 1 = \frac{(0)(0+1)}{2}$ Base Case. Statement is true for n = 0 P(0) is true plus inductive step \Longrightarrow true for n = 1 $(P(0) \land (P(0) \Longrightarrow P(1))) \Longrightarrow P(1)$ plus inductive step \Longrightarrow true for n = 2 $(P(1) \land (P(0) \Longrightarrow P(1))) \Longrightarrow P(2)$

true for $n = k \implies$ true for $n = k + 1 (P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

21

Predicate, P(n), True for all natural numbers! **Proof by Induction**.