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Direct Proof.

Theorem: For any a,b,c € Z, if a|b and a|c then a|(b—c).

Proof: Assume alb and alc
b=aqgand c=aq where q,q € Z

b—c=aq—aq =a(q—q') Done?
(b—c)=a(g—q') and (g—q') is an integer so
al(b—c) O

Works for Va, b,c?
Argument applies to every a,b,c € Z.

Direct Proof Form:
Goal: P = Q
Assume P.

Therefore Q.

Lecture 2: Proofs!

1. Direct proof
. by Contraposition
. by Contradiction

AW N

. by Cases
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Another direct proof.

Let D3 be the 3 digit natural numbers.

Theorem: For n € Dj, if the alternating sum of digits of n is divisible by 11, than 11|n.

vn e Dy, (11]alt. sum of digits of n) = 11|n

Examples:
n=121 AltSum: 1-2+1=0. Divis. by 11. Asis 121.

n=605 AltSum:6—0+5=11 Divis. by 11. Asis 605 =11(55)

Proof: For n€ D3, n=100a+ 10b+ c, for some a,b,c.
Assume: Alt. sum: a— b+ ¢ = 11k for some integer k.

Add 99a-11b to both sides.
100a+10b+c=11k+99a+11b=11(k+9a+b)

Left hand side is n, k+9a+ bis integer. = 11|n. [m]

Direct proof of P = Q:
Assumed P: 11|la—b+c. Proved Q: 11|n.

Quick Background and Notation.

Integers closed under addition.
abeZ = a+beZ
alb means “a divides b”".
2|47 Yes!
7|23? No!
4]2? No!
Formally: alb <= 3q € Z where b= aq.
3|15 since for g =5, 15 =3(5).

A natural number p > 1, is prime if it is divisible only by 1 and itself.
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Thm: Vn € Ds. (11]alt. sum of digits of n) = 11|n
Is converse a theorem?  Vne D;,(11|n) = (11|alt. sum of digits of n)

Yes? No?




Another Direct Proof. Proof by Contraposition Another Contraposition...

Theorem: Vne D3, (11|n) = (11[alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a—11b =
a—-b+c=11(k—9a-b) =
a—b+c=11{where {=(k—9a—-b)e Z

That is 11|alternating sum of digits.
Note: similar proof to other. In this case every — is <=

Often works with arithmetic properties ...
...not when multiplying by 0.

We have.

Theorem: Vne N, (11alt. sum of digits of n) <= (11|n)

Theorem: V2 is irrational.

Must show: For every a,b € Z, (§)? # 2.

Proof by contradiction:
Theorem: P.

-P = Py--- = R
-P = Q-+ = -R
-P = RA-R=False

Contrapositive: True = P. Theorem P is proven.

of by contradiction:form

A simple property (equality) should always “not” hold.

Thm: For ne Z* and d|n. If nis odd then d is odd.
n=2k+1 what do we know about d?
What to do?

Goal: Prove P = Q.

Assume -Q
...and prove —P.

Conclusion: -Q = —P equivalentto P = Q.
Proof: Assume —Q: d is even. d = 2k.
d|n so we have

n=qd = q(2k) = 2(kq)

nis even. =P

Contra on
Theorem: V2 is irrational.
Assume —P: V2 =a/bfora,be Z.

Reduced form: a and b have no common factors.

V2b=a
2b% = & = 4k?
&% is even = ais even.
a = 2k for some integer k
b? = 2k?

b?is even = bis even.

aand b have a common factor. Contradiction.

Lemma: For every nin N, n? is even = niseven. (P = Q)
n? is even, n? = 2k, ...\/2k even?

Proof by contraposition: (P — Q) =(-Q = -P)
P="r?iseven. ........ -P ='r? is odd’
Q='niseven ... —-Q="nis odd’

Prove ~Q = -P: nis odd = n? is odd.
n=2k+1

P =4k?+ 4k +1=2(2k? + k) +1.

n? = 2/+1 where / is a natural number..

... and n? is odd!

-Q = -PsoP = Qand...

Theorem: There are infinitely many primes.
Proof:

« Assume finitely many primes: py,..., Pk-
« Consider
q=(p1 xp2x---p)+1.

« g cannot be one of the primes as it is larger than any p;.
« g has prime divisor p ("p > 1" = R ) which is one of p;.

« pdivides both x = py - po--- px and g, and divides q — x,
© = plg-x = p<qg-x=1.

« so p < 1. (Contradicts R.)

The original assumption that “the theorem is false” is false,
thus the theorem is proven.
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roof by con on: example




Product of first k primes.. Proof by cases. Proof by cases.

Did we prove?

« “The product of the first k primes plus 1 is prime.”
* No.
= The chain of reasoning started with a false statement.

Consider example..

* 2x3x5x7x11x13+1=30031 =59 x 509

« Proof assumed no primes in between py and q.

Theorem: 3=4

Proof: Assume 3 = 4.
Start with 12 = 12.

Divide one side by 3 and the other by 4 to get
4=3.

By commutativity theorem holds.

Don't assume what you want to prove!

= There is a prime in between 13 and g = 30031 that divides q.

Theorem: x° — x4 1= 0 has no solution in the rationals.
Proof: Firstalemma...

Lemma: If x is a solution to x> — x+1=0and x = a/b for a,b € Z, then both a and b are even.

Reduced form §: aand b can't both be even! + Lemma
== no rational solution.

Proof of lemma: Assume a solution of the form a/b.
a\s a
() ~p+1=0
Multiply by b°,
& —ab*+b°=0

Case 1: aodd, b odd: odd - odd +odd = even. Not possible.
Case 2: aeven, b odd: even - even +odd = even. Not possible.
Case 3: aodd, b even: odd - even +even = even. Not possible.
Case 4: aeven, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: 1 =2
Proof: For x = y, we have

(X2 —xy)=x2—y?

x(x=y)=(x+y)(x-y)

x=(x+y)
X=2x
1=2

Dividing by zero is no good.
Also: Multiplying inequalities by a negative.

P = Qdoes not mean Q = P.
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really careful!

Theorem: There exist irrational x and y such that x” is rational.
Letx=y=+2.
V2. "
Case 1: x¥ = /2" is rational. Done!
Case 2: 2" is irrational.

« New values: x = \/EVZ, y=v2.

V2 2 V2
. (@ 2) NG Py

Thus, we have irrational x and y with a rational x¥ (i.e., 2).
One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!

Direct Proof:
To Prove: P = Q. Assume P. Prove Q.

By Contraposition:
To Prove: P = Q Assume —Q. Prove -P.

By Contradiction:
To Prove: P Assume —P. Prove False .

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either v2 and /2 worked.
or vZand v2** worked.

Careful when proving!
Don't assume the theorem. Divide by zero.Watch converse. ...




1. The natural numbers.
2. 5year old Gauss.

3. ..and Induction.

4. Simple Proof.
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Gauss and Induction

Child Gauss: (L7 i = ") Proof?

Idea: assume predicate P(n) for n=k. P(k) is Zf‘:, = @

Is predicate, P(n) true for n=k+1?

Y= (T )+ (k1) = KD oy = (i)

i=1 > o

How about k +2. Same argument starting at k + 1 works!
P(k) = P(k+1).

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0)is Y% oi=1= M

Statement is true for n =0 P(0) is true
plus inductive step = true for n=1 (P(0)A(P(0) = P(1))) = P(1)
plus inductive step = true for n=2 (P(1)(P(1) = P(2))) = P(2)

true for n=k = true for n=Kk+1 (P(k)n(P(k) = P(k+1))) = P(k+1)

Predicate, P(n), True for all natural numbers!
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n+3

n+2
0,1,2,3,

—onn+1,n+2n+3, ...

Teacher: Hello class.
Teacher: Please add the numbers from 1 to 100.

Gauss: It's m or 5050!
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