
Alex Psomas: Lecture 19.

1. Distributions
2. Tail bounds
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Geometric Distribution: Memoryless

Let X be Geom(p). Theorem

Pr [X > n+m|X > n] = Pr [X > m],m,n ≥ 0.
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Geometric Distribution: Memoryless

I flip a coin (probability of H is p) until I get H.

What’s the probability that I flip it exactly 100 times? (1−p)99p

What’s the probability that I flip it exactly 100 times if (given
that) the first 20 were T?

Same as flipping it exactly 80 times!

(1−p)79p.
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Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.
Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = (2−p)/p2 (tricks)

var [X ] = E [X 2]−E [X ]2 = 2−p
p2 − 1

p2 = 1−p
p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).
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Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m � n one has

Pr [X = m] =
λ m

m!
e−λ .
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Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .
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Poisson and Queueing.

Poisson: Distribution of how many events in an interval?

Average: λ .

What is the maximum number of customers you might see?

Idea: Cut into intervals so that “sum of Bernoulli (indicators)”.
n = 10 sub-intervals.
Binomial distribution, if only one event/interval!

Maybe more...
and more.

As n goes to infinity...analyze ...

.... Pr [X = i] =
�n

i

�
pi(1−p)n−i .

derive simple expression.
...And we get the Poisson distribution!
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When to use Poisson

If an event can occur 0,1,2,... times in an interval,

and the average number of events per interval is λ

and events are independent

and the probability of an event in an interval is proportional to
the interval’s length,

then it might be appropriate to use Poisson distribution.

Pr [k events in interval] =
λ k

k !
e−λ

Examples: photons arriving at a telescope, telephone calls
arriving in a system, the number of mutations on a strand of
DNA per unit length...
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Simeon Poisson

The Poisson distribution is named after:

“Life is good for only two things: doing mathematics and
teaching it.”
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Inequalities: An Overview
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f (a)
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Observe that
1{X ≥ a}≤ f (X )

f (a)
.

Indeed, if X < a, the inequality reads 0 ≤ f (X )/f (a), which holds
since f (·)≥ 0. Also, if X ≥ a, it reads 1 ≤ f (X )/f (a), which holds since
f (·) is nondecreasing. Expectation is monotone: if X (ω)≤ Y (ω) for
all ω, then E [X ]≤ E [Y ]. Therefore,

E [1{X ≥ a}]≤ E [f (X )]

f (a)
.
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Theorem For a non-negative random variable X , and any a > 0,

Pr [X ≥ a]≤ E [X ]

a
.
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Flip a coin n times. Probability of H is p. X counts the number
of heads.
X follows the Binomial distribution with parameters n and p.
X ∼ B(n,p).
E [X ] = np. Say n = 1000 and p = 0.5. E [X ] = 500.

Markov says that Pr [X ≥ 600]≤ 1000∗0.5
600 = 5

6 ≈ 0.83

Actual probability: < 0.000001

Notice: Same bound for 10 coins and Pr [X ≥ 6]
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This is Pafnuty’s inequality:
Theorem:

Pr [|X −E [X ]|≥ a]≤ var [X ]

a2 , for all a > 0.

Proof: Let Y = |X −E [X ]| and f (y) = y2. Then,

Pr [Y ≥ a]≤ E [f (Y )]

f (a)
=

E [|X −E [X ]|2]
a2 =

var [X ]

a2 .

This result confirms that the variance measures the “deviations
from the mean.”
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Flip a coin n times. Probability of H is p. X counts the number
of heads.
X follows the Binomial distribution with parameters n and p.
X ∼ B(n,p).
E [X ] = np. Var [X ] = np(1−p).
Say n = 1000 and p = 0.5. E [X ] = 500. Var [X ] = 250.

Markov says that Pr [X ≥ 600]≤ 500
600 = 5

6 ≈ 0.83

Chebyshev says that Pr [X ≥ 600] = Pr [X −500 ≥ 100]≤
Pr [|X −500|≥ 100]≤ 250

10000 = 0.025

Actual probability: < 0.000001

Notice: If we had 100 coins, the bound for Pr [X ≥ 60] would be
different.
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As n → ∞, this probability goes to zero.

In fact, for any ε > 0, as n → ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:



Chebyshev’s inequality example continued

E [Yn] = 0.5, Var [Yn] =
1

4n .

Pr [|Yn −0.5|≥ ε]≤ Var [Yn]

ε2 =
1

4nε2

For ε = 0.01: Pr [|Yn −0.5|≥ 0.01]≤ 2500
n

For n = 250,000 this is 1%.

As n → ∞, this probability goes to zero.

In fact, for any ε > 0, as n → ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Yn −0.5|≤ ε]→ 1.



Chebyshev’s inequality example continued

E [Yn] = 0.5, Var [Yn] =
1

4n .

Pr [|Yn −0.5|≥ ε]≤ Var [Yn]

ε2 =
1

4nε2

For ε = 0.01: Pr [|Yn −0.5|≥ 0.01]≤ 2500
n

For n = 250,000 this is 1%.

As n → ∞, this probability goes to zero.

In fact, for any ε > 0, as n → ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Yn −0.5|≤ ε]→ 1.

This is an example of the Law of Large Numbers.



Chebyshev’s inequality example continued

E [Yn] = 0.5, Var [Yn] =
1

4n .

Pr [|Yn −0.5|≥ ε]≤ Var [Yn]

ε2 =
1
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For ε = 0.01: Pr [|Yn −0.5|≥ 0.01]≤ 2500
n

For n = 250,000 this is 1%.

As n → ∞, this probability goes to zero.

In fact, for any ε > 0, as n → ∞, the probability that the fraction
of Hs is within ε > 0 of 50% approaches 1:

Pr [|Yn −0.5|≤ ε]→ 1.

This is an example of the Law of Large Numbers.

We look at a general case next.
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nε2 → 0, as n → ∞.

(I used that variance is finite for this proof. More complicated
proof without this assumption.)
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Estimation p̂ is within 0.01 of the true p, with probability at least
95%.

Pr [|p̂−p|≥ ε]≤ p(1−p)
nε2

We want to make Pr [|p̂−p|≤ 0.01] at least 0.95.

Same as Pr [|p̂−p|≥ 0.01] at most 0.05.

It’s sufficient to have p(1−p)
nε2 ≤ 0.05 or n ≥ 20p(1−p)

ε2 .

p(1−p) is maximized for p = 0.5. Therefore it’s sufficient to
have n ≥ 5

ε2 .

For ε = 0.01 we get that n ≥ 50000 coins are sufficient.
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Today’s gig: ?

Gigs so far:
1. How to tell random from human.
2. Monty Hall.
3. Birthday Paradox.
4. St. Petersburg paradox.
5. Simpson’s paradox.
6. Two envelopes problem.

Today: A magic trick.



Summary

� Variance of Geometric.
� Markov’s Inequality
� Chebyshev’s Inequality.


