Alex Psomas: Lecture 18.	Variance	Variance
Random Variables: Variance 1. Variance 2. Distributions	Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0. Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let Y be the RV indicating how much money you make. E(Y) = 0. Any other measures??? What else that's informative can we say?	$\int_{Var}^{Wean} \int_{Var}^{Var} = 1$ The variance measures the deviation from the mean value. Definition: The variance of X is $\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$ $\sigma(X)$ is called the standard deviation of X.
Variance and Standard Deviation	Example	A simple example
		This example illustrates the term 'standard deviation.'
Fact: $var[X] = E[X^2] - E[X]^2$. Indeed: $var(X) = E[(X - E[X])^2]$ $= E[X^2 - 2XE[X] + E[X]^2]$ $= E[X^2] - E[2XE[X]] + E[E[X]^2]$ by linearity $= E[X^2] - 2E[X]E[X] + E[X]^2$, $= E[X^2] - E[X]^2$.	Consider X with $X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01.} \end{cases}$ Then $E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$ $E[X^2] = (-1)^2 \times 0.99 + (99)^2 \times 0.01 \approx 100.$ $Var(X) \approx 100 \implies \sigma(X) \approx 10.$	$Pr = 0.5 \qquad \sigma \qquad Pr = 0.5$ $\mu - \sigma \qquad \mu + \sigma$ Consider the random variable X such that $X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2 \\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$ Then, $E[X] = \mu$ and $E[(X - E[X])^2] = \sigma^2$. Hence, $var(X) = \sigma^2 \text{ and } \sigma(X) = \sigma.$

Variance of sum of independent random variables Theorem: If X, Y, Z,... are pairwise independent, then var(X+Y+Z+...) = var(X) + var(Y) + var(Z) + Proof: Since shifting the random variables does not change their variance, let us subtract their means. That is, we assume that E[X] = E[Y] = ... = 0. Then, by independence, E[XY] = E[X]E[Y] = 0. Also, E[XZ] = E[YZ] = ... = 0. Hence, $var(X+Y+Z+...) = E((X+Y+Z+...)^2)$ $= E(X^2+Y^2+Z^2+...+2XY+2XZ+2YZ+...)$ $= E(X^2) + E(Y^2) + E(Z^2) + ...+0 + ...+0$ = var(X) + var(Y) + var(Z) +

BinomialExpectation of Binomial DistributionVariance of Binomial DistributionFile r coins with heads probability of part of coin figsIndicator for the *i*-th coin:
$$\chi = \begin{cases} 1 & \text{if the flip is heads} \\ 0 & \text{otherwise} \end{cases}$$
Variance of Binomial Distribution.What is the probability of its in any position is p .
Probability of tails in any position is p .
Probability of tails in any position is p .
Probability of tails in any position is p .
Probability of $1 + p^{p-1}$.Expectation of Binomial DistributionVariance of Binomial Distribution.Uniform Distribution $\chi = \begin{cases} 1 & \text{if the flip is heads} \\ 0 & \text{otherwise} \end{cases}$ Variance of UniformUniform Distribution $\xi = [\chi] = 1 + 2p^{p-1}$ $\xi = [\chi] = 1 + 2p^{p-1}$ $\chi_{a} = \{ 1 + 2p^{p-1} + 2p$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$
Note that

$$\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p\sum_{n=1}^{\infty} (1 - p)^{n-1} = p\sum_{n=0}^{\infty} (1 - p)^n.$$
We want to analyze $S := \sum_{n=0}^{\infty} a^n$ for $|a| < 1$. $S = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

$$aS = a + a^2 + a^3 + a^4 + \cdots$$

$$(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.$$
Hence,

$$\sum_{n=1}^{\infty} Pr[X = n] = p \frac{1}{1 - (1 - p)} = 1.$$
Time to collect coupons
X-time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
 X_2 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
 X_2 - time to get second (distinct) coupon after getting first.
 $Pr["get second distinct coupon"]"got first coupon"] = \frac{n-1}{n}$
 $E[X_2]?$ Geometric !!! $\Longrightarrow E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n-1}{n}$.
 $Pr["getting ith distinct coupon]"got i - 1 distinct coupons"]$
 $= \frac{n - (i-1)}{n} = \frac{n - i + 1}{n}$
 $E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Geometric Distribution: Expectation

$$X \sim \textit{Geom}(p), \text{ i.e., } \Pr[X=n] = (1-p)^{n-1}p, n \geq 1.$$
 One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} (1-p)^{n-1}p = \sum_{n=1}^{\infty} Pr[X = n] = 1.$

Hence,

$$E[X]=\frac{1}{p}.$$

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Arriance of geometric distribution.
X is a geometrically distributed RV with parameter p.
Thus,
$$Pr[X = n] = (1 - p)^{n-1}p$$
 for $n \ge 1$. Recall $E[X] = 1/p$.

$$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...$$

$$-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...]$$

$$pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...) = E[X]!$$

$$-(p + p(1 - p) + 3p(1 - p)^2 + ...) = E[X]!$$

$$-(p + p(1 - p) + p(1 - p)^2 + ...) = 1.$$

$$pE[X^2] = 2E[X] - 1$$

$$= 2(\frac{1}{p}) - 1 = \frac{2 - p}{p}$$

$$\implies E[X^2] = (2 - p)/p^2$$
 and

$$var[X] = E[X^2] - E[X]^2 = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{1 - p}{p^2}.$$

$$\sigma(X) = \frac{\sqrt{1 - p}}{p} \approx E[X]$$
 when *p* is small(ish).
Wo envelopes
I put *x* dollars in an envelope, and 2*x* dollars in another
envelope, and seal both envelopes.
You pick one at random (you don't know which is which).
Before you open it you think: What will happen if I switch?
Well, if I picked the one I picked has *y* dollars, then the other
either 2*y* or $\frac{y}{2}$.
In the first case, I win *y*. In the second case, I lose $\frac{y}{2}$.
Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2}y = \frac{y}{2}$.
Therefore, I should switch.
Before you open the new envelope you think: What will happen
if I switch?

Review: Distributions

- ▶ Bern(p): Pr[X = 1] = p; E[X] = p;
- Var[X] = p(1-p);
- $Bin(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, ..., n;$ E[X] = np;Var[X] = np(1-p);
- ► $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2};$ $Var[X] = \frac{n^2-1}{12};$
- Geom(p): $Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$ $Var[X] = \frac{1 - p}{n^2};$

Summary Random Variables • Variance. • Distributions.