### Alex Psomas: Lecture 17.

Random Variables: Expectation, Variance

### Alex Psomas: Lecture 17.

Random Variables: Expectation, Variance

- 1. Random Variables, Expectation: Brief Review
- 2. Independent Random Variables.
- 3. Variance

**Definition** 

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a variable that takes as value one of the random samples.

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a variable that takes as value one of the random samples. NO!

# Random Variables: Definitions Definition

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

#### Definition

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X:\Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### Definition

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X:\Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For  $A \subset \Re$ , one defines the **event** 

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X:\Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For  $A \subset \Re$ , one defines the **event** 

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X:\Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For  $A \subset \Re$ , one defines the **event** 

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that  $X \in A$  is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

#### **Definition**

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For  $A \subset \Re$ , one defines the **event** 

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that  $X \in A$  is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X = a]) : a \in \mathscr{A}\},\$$

where  $\mathscr{A}$  is the *range* of X.

#### Definition

A random variable, X, for a random experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .

#### **Definitions**

(a) For  $a \in \Re$ , one defines the **event** 

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For  $A \subset \Re$ , one defines the **event** 

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that  $X \in A$  is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X=a]): a \in \mathscr{A}\},$$

where  $\mathscr{A}$  is the *range* of X. That is,  $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$ .

Flip a fair coin three times.

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$ 

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's:  $\{3, 2, 2, 2, 1, 1, 1, 0\}$ .

Range of X?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's:  $\{3, 2, 2, 2, 1, 1, 1, 0\}$ .

▶ Range of X? {0,1,2,3}. All the values X can take.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- $X^{-1}(2)$ ?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ▶ Is  $X^{-1}(1)$  an event?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ▶ Is  $X^{-1}(1)$  an event? **YES**. It's a subset of the outcomes.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ► Is  $X^{-1}(1)$  an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X?  $\{0,1,2,3\}$ . All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ▶ Is  $X^{-1}(1)$  an event? **YES**. It's a subset of the outcomes.
- Pr[X]? This doesn't make any sense bro....

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ▶ Is  $X^{-1}(1)$  an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....
- ▶ Pr[X = 2]?

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

- ▶ Range of X? {0,1,2,3}. All the values X can take.
- ►  $X^{-1}(2)$ ?  $X^{-1}(2) = \{HHT, HTH, THH\}$ . All the **outcomes**  $\omega$  such that  $X(\omega) = 2$ .
- ▶ Is  $X^{-1}(1)$  an event? **YES**. It's a subset of the outcomes.
- ▶ Pr[X]? This doesn't make any sense bro....
- ▶ Pr[X = 2]?

$$Pr[X = 2] = Pr[X^{-1}(2)] = Pr[\{HHT, HTH, THH\}]$$
  
=  $Pr[\{HHT\}] + Pr[\{HTH\}] + Pr[\{THH\}] = \frac{3}{8}$ 

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function.

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ .

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ . Examples:

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ . Examples:

➤ X<sup>k</sup>

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ .

### Examples:

- ➤ X<sup>k</sup>
- ►  $(X a)^2$

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ .

### Examples:

- ➤ X<sup>k</sup>
- ►  $(X a)^2$
- $a+bX+cX^2+(Y-Z)^2$

## Random Variables: Definitions

Let X,Y,Z be random variables on  $\Omega$  and  $g: \Re^3 \to \Re$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ .

### Examples:

- ➤ X<sup>k</sup>
- ►  $(X a)^2$
- $A + bX + cX^2 + (Y Z)^2$
- ►  $(X Y)^2$

## Random Variables: Definitions

Let X,Y,Z be random variables on  $\Omega$  and  $g:\mathfrak{R}^3\to\mathfrak{R}$  a function. Then g(X,Y,Z) is the random variable that assigns the value  $g(X(\omega),Y(\omega),Z(\omega))$  to  $\omega$ .

Thus, if V = g(X, Y, Z), then  $V(\omega) := g(X(\omega), Y(\omega), Z(\omega))$ .

### Examples:

- ➤ X<sup>k</sup>
- ►  $(X a)^2$
- $\rightarrow a + bX + cX^2 + (Y Z)^2$
- ►  $(X Y)^2$
- ►  $X \cos(2\pi Y + Z)$ .

Definition: The expected value

**Definition:** The **expected value** (or mean, or expectation)

**Definition:** The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

**Definition:** The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

**Definition:** The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

**Theorem:** 

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

## An Example

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}. \ X = \text{number of $H$'s: } \{3,2,2,2,1,1,1,0\}. \ \text{Thus,}$$

$$\sum_{\omega} X(\omega) Pr[\omega] = 3\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 0\frac{1}{8}.$$

## An Example

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}. X =$  number of H's:  $\{3,2,2,2,1,1,1,0\}.$  Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = 3\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 2\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 1\frac{1}{8} + 0\frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3\frac{1}{8} + 2\frac{3}{8} + 1\frac{3}{8} + 0\frac{1}{8}.$$

Expected winnings for heads/tails games, with 3 flips?

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$ 

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HHT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X]=3\frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HHH, HTT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8}$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HHT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HHT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of  $\boldsymbol{X}$ .

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$ 

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect!

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH,HHT,HTH,HTT,THH,THT,TTH,TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$ 

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

$$\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$$

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let  $X_1$  be your winnings the first time you play the game,  $X_2$  are your winnings the second time you play the game, and so on.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let  $X_1$  be your winnings the first time you play the game,  $X_2$  are your winnings the second time you play the game, and so on. (Notice that  $X_i$ 's have the same distribution!)

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}  $\rightarrow$  {3,1,1,-1,1,-1,-3}.

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let  $X_1$  be your winnings the first time you play the game,  $X_2$  are your winnings the second time you play the game, and so on. (Notice that  $X_i$ 's have the same distribution!) When  $n \gg 1$ :

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$ 

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let  $X_1$  be your winnings the first time you play the game,  $X_2$  are your winnings the second time you play the game, and so on. (Notice that  $X_i$ 's have the same distribution!) When  $n \gg 1$ :

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

The fact that this average converges to E[X] is a theorem:

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable *X*:

 $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3, 1, 1, -1, 1, -1, -1, -3\}.$ 

$$E[X] = 3\frac{1}{8} + 1\frac{3}{8} - 1\frac{3}{8} - 3\frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: Expected value is not a common value. It doesn't have to be in the range of X.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times. Let  $X_1$  be your winnings the first time you play the game,  $X_2$  are your winnings the second time you play the game, and so on. (Notice that  $X_i$ 's have the same distribution!) When  $n \gg 1$ :

$$\frac{X_1+\cdots+X_n}{n}\to 0$$

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

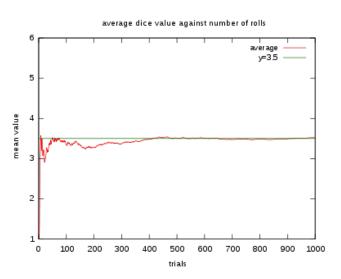
# Law of Large Numbers

# Law of Large Numbers

An Illustration: Rolling Dice

# Law of Large Numbers

An Illustration: Rolling Dice



**Definition** 

#### **Definition**

Let A be an event. The random variable X defined by

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that 
$$Pr[X = 1] =$$

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that 
$$Pr[X = 1] = Pr[A]$$
 and  $Pr[X = 0] =$ 

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable  $X(\omega)$  is sometimes written as

$$1\{\omega \in A\}$$
 or  $1_A(\omega)$ .

#### **Indicators**

#### **Definition**

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable  $X(\omega)$  is sometimes written as

$$1\{\omega \in A\}$$
 or  $1_A(\omega)$ .

Thus, we will write  $X = 1_A$ .

Theorem:

Theorem: Expectation is linear

**Theorem:** Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

**Theorem:** Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

**Proof:** 

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note:

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined  $Y = a_1 X_1 + \cdots + a_n X_n$  has had tried to compute  $E[Y] = \sum_y y Pr[Y = y]$ , we would have been in trouble!

Roll a die *n* times.

Roll a die n times.

Roll a die *n* times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n],$ 

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$
  
=  $E[X_1] + \cdots + E[X_n]$ , by linearity

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ ,

Roll a die *n* times.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Roll a die n times.

 $X_m$  = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$
  
=  $E[X_1] + \cdots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} =$$

Roll a die *n* times.

 $X_m$  = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =$$

Roll a die n times.

 $X_m$  = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Roll a die n times.

 $X_m$  = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}.$$

Roll a die n times.

 $X_m$  = number of dots on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of dots in  $n$  rolls.

$$E[X] = E[X_1 + \dots + X_n]$$
  
=  $E[X_1] + \dots + E[X_n]$ , by linearity  
=  $nE[X_1]$ , because the  $X_m$  have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X] = \frac{7n}{2}.$$

Note: Computing  $\sum_{x} xPr[X = x]$  directly is not easy!

Alex is typing a document randomly:

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types.

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long.

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears.

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach:

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach: Let  $X_i$  be the indicator variable that takes value 1 if "pizza" starts on the i-th letter, and 0 otherwise.

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach: Let  $X_i$  be the indicator variable that takes value 1 if "pizza" starts on the *i*-th letter, and 0 otherwise. *i* takes from 1 to 100,000-4=999,999,996.

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach: Let  $X_i$  be the indicator variable that takes value 1 if "pizza" starts on the *i*-th letter, and 0 otherwise. *i* takes from 1 to 100,000-4=999,999,996.

hpizzafgnpizzadjgbidgne....

Alex is typing a document randomly: Each letter has a probability of  $\frac{1}{26}$  of being types. The document will be 100,000,000 letters long. What is the expected number of times that the word "pizza" will appear?

Let X be a random variable that counts the number of times the word "pizza" appears. We want E(X).

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega].$$

Better approach: Let  $X_i$  be the indicator variable that takes value 1 if "pizza" starts on the *i*-th letter, and 0 otherwise. *i* takes from 1 to 100,000-4=999,999,996.

hpizzafgnpizzadjgbidgne....

$$X_2 = 1, X_{10} = 1,...$$

$$E(X_i) = (\frac{1}{26})^5$$

$$E(X_i) = (\frac{1}{26})^5$$

Therefore,

$$E(X) = E(\sum_{i} X_{i})$$

$$E(X_i) = (\frac{1}{26})^5$$

Therefore,

$$E(X) = E(\sum_{i} X_{i}) = \sum_{i} E(X_{i})$$

$$E(X_i) = (\frac{1}{26})^5$$

Therefore,

$$E(X) = E(\sum_{i} X_{i}) = \sum_{i} E(X_{i}) = 999,999,996(\frac{1}{26})^{5}$$

# Using Linearity - 2: Expected number of times a word appears.

$$E(X_i) = (\frac{1}{26})^5$$

Therefore,

$$E(X) = E(\sum_{i} X_{i}) = \sum_{i} E(X_{i}) = 999,999,996(\frac{1}{26})^{5} \approx 84$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday.

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let  $X_{i,j}$  be the indicator random variable for the event that two people i and j have the same birthday.

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$
$$= \sum_{i,j} E[X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$
$$= \sum_{i,j} E[X_{i,j}]$$
$$= \sum_{i,j} Pr[X_{i,j}]$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E\left[\sum_{i,j} X_{i,j}\right]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

$$E[X] = E[\sum_{i,j} X_{i,j}]$$

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365} = \frac{k(k-1)}{2} \frac{1}{365}$$

Let X be the random variable indicating the number of pairs of people, in a group of k people, sharing the same birthday. What's E(X)?

Let  $X_{i,j}$  be the indicator random variable for the event that two people i and j have the same birthday.  $X = \sum_{i,j} X_{i,j}$ .

 $E[X] = E[\sum_{i,j} X_{i,j}]$ 

$$= \sum_{i,j} E[X_{i,j}]$$

$$= \sum_{i,j} Pr[X_{i,j}]$$

$$= \sum_{i,j} \frac{1}{365} = \binom{k}{2} \frac{1}{365} = \frac{k(k-1)}{2} \frac{1}{365}$$

For a group of 28 it's about 1. For 100 it's 13.5. For 280 it's 107.

#### Calculating E[g(X)]Let Y = g(X).

Let Y = g(X). Assume that we know the distribution of X.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where  $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$ 

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

**Method 2:** We use the following result.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{X} \sum_{\omega \in X^{-1}(X)} g(X(\omega))Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

**Method 1:** We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where  $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$ 

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x \in \mathscr{A}(X)} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$

$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

$$= \sum_{x} g(x)Pr[X = x].$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ .

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of  $Y = X^2$ :

Let *X* be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $q(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of 
$$Y=X^2$$
: 
$$Y=\left\{\begin{array}{ccc} 4, & \text{w.p. } \frac{2}{6} \end{array}\right.$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \end{cases}$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \end{cases}$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \left\{ \begin{array}{ll} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6}. \end{array} \right.$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \left\{ \begin{array}{ll} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6}. \end{array} \right.$$

Let X be uniform in  $\{-2, -1, 0, 1, 2, 3\}$ .

Let also  $g(X) = X^2$ . Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of  $Y = X^2$ :

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} \end{cases}$$

Thus,

hus, 
$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X,Y,Z)] = \sum g(x,y,z)Pr[X=x,Y=y,Z=z].$$

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{y,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

An Example.

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

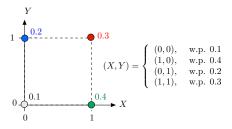
Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$



We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x, y, z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1\\ (1,0), & \text{w.p. } 0.4\\ (0,1), & \text{w.p. } 0.2\\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] =$$

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1\\ (1,0), & \text{w.p. } 0.4\\ (0,1), & \text{w.p. } 0.2\\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$$

We have seen that  $E[g(X)] = \sum_{x} g(x) Pr[X = x]$ .

Using a similar derivation, one can show that

$$E[g(X, Y, Z)] = \sum_{x,y,z} g(x,y,z) Pr[X = x, Y = y, Z = z].$$

$$(X,Y) = \begin{cases} 0.2 & 0.3 \\ (X,Y) = \begin{cases} (0,0), & \text{w.p. } 0.1 \\ (1,0), & \text{w.p. } 0.4 \\ (0,1), & \text{w.p. } 0.2 \\ (1,1), & \text{w.p. } 0.3 \end{cases}$$

$$E[\cos(2\pi X + \pi Y)] = 0.1\cos(0) + 0.4\cos(2\pi) + 0.2\cos(\pi) + 0.3\cos(3\pi)$$
$$= 0.1 \times 1 + 0.4 \times 1 + 0.2 \times (-1) + 0.3 \times (-1) = 0.$$

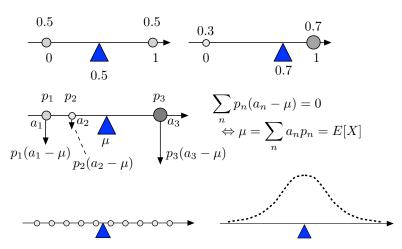
## **Center of Mass**

### Center of Mass

The expected value has a *center of mass* interpretation:

#### Center of Mass

The expected value has a *center of mass* interpretation:



If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

#### **Theorem**

The value of a that minimizes  $E[(X-a)^2]$  is a=E[X].

If you only know the distribution of X, it seems that E[X] is a 'good guess' for X.

The following result makes that idea precise.

#### **Theorem**

The value of a that minimizes  $E[(X-a)^2]$  is a = E[X].

Unfortunately, we won't talk about this in this class...

**Definition:** Independence

**Definition:** Independence

The random variables X and Y are **independent** if and only if

**Definition:** Independence

The random variables X and Y are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all a and b.

**Definition:** Independence

The random variables X and Y are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all  $a$  and  $b$ .

Fact:

### **Definition:** Independence

The random variables *X* and *Y* are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all  $a$  and  $b$ .

#### Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$$
, for all  $a$  and  $b$ .

### **Definition:** Independence

The random variables X and Y are **independent** if and only if

$$Pr[Y = b|X = a] = Pr[Y = b]$$
, for all  $a$  and  $b$ .

#### Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$$
, for all  $a$  and  $b$ .

Obvious.

#### Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

#### **Example 1**

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed:  $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$ 

#### Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed: 
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

### **Example 2**

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X = number of dots

#### Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed: 
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

### **Example 2**

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

#### Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed: 
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

### Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

Indeed:  $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$ .

#### Example 1

Roll two die. X = number of dots on the first one, Y = number of dots on the other one. X, Y are independent.

Indeed: 
$$Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$$

### Example 2

Roll two die. X = total number of dots, Y = number of dots on die 1 minus number on die 2. X and Y are not independent.

Indeed:  $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$ .

# Functions of Independent random Variables

**Theorem** Functions of independent RVs are independent Let *X*, *Y* be independent RV. Then

f(X) and g(Y) are independent, for all  $f(\cdot), g(\cdot)$ .

### **Theorem**

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Theorem**

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

### **Proof:**

#### **Theorem**

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y]$$

### **Theorem**

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y]$$

#### **Theorem**

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} [\sum_{y} xyPr[X = x]Pr[Y = y]]$$

#### **Theorem**

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyPr[X = x]Pr[Y = y]\right] = \sum_{x} \left[xPr[X = x]\left(\sum_{y} yPr[Y = y]\right)\right]$$

#### **Theorem**

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x,y} xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[ \sum_{y} xy Pr[X = x] Pr[Y = y] \right] = \sum_{x} \left[ xPr[X = x] \left( \sum_{y} yPr[Y = y] \right) \right]$$

$$= \sum_{x} \left[ xPr[X = x] E[Y] \right]$$

#### **Theorem**

Let *X*, *Y* be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

#### **Proof:**

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x,y} xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[ \sum_{y} xy Pr[X = x] Pr[Y = y] \right] = \sum_{x} \left[ xPr[X = x] \left( \sum_{y} yPr[Y = y] \right) \right]$$

$$= \sum_{x} \left[ xPr[X = x] E[Y] \right] = E[X] E[Y].$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself?

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$
  
= 1+4+9+4×0+12×0+6×0

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$
  
= 1+4+9+4×0+12×0+6×0  
= 14.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$
  
= 1+4+9+4×0+12×0+6×0  
= 14.

(2) Let X, Y be independent and take values from  $\{1, 2, ... n\}$  uniformly at random. Then

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$
  
= 1+4+9+4×0+12×0+6×0  
= 14.

(2) Let X, Y be independent and take values from  $\{1, 2, ... n\}$  uniformly at random. Then

$$E[(X-Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and  $E[X^2] = E[Y^2] = E[Z^2] = 1$ .

Wait. Isn't X independent with itself? No. If I tell you the value of X, then you know the value of X.

Then

$$E[(X+2Y+3Z)^2] = E[X^2+4Y^2+9Z^2+4XY+12YZ+6XZ]$$
  
= 1+4+9+4×0+12×0+6×0  
= 14.

(2) Let X, Y be independent and take values from  $\{1, 2, ... n\}$  uniformly at random. Then

$$E[(X-Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$
$$= \frac{1 + 3n + 2n^2}{3} - \frac{(n+1)^2}{2}.$$

**Definition** 

### **Definition**

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all  $x, y, z$ .

### **Definition**

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all  $x, y, z$ .

#### **Theorem**

### **Definition**

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z.$$

#### Theorem

The events  $A, B, C, \ldots$  are pairwise (resp. mutually) independent iff the random variables  $1_A, 1_B, 1_C, \ldots$  are pairwise (resp. mutually) independent.

### **Definition**

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all  $x, y, z$ .

#### **Theorem**

The events  $A, B, C, \ldots$  are pairwise (resp. mutually) independent iff the random variables  $1_A, 1_B, 1_C, \ldots$  are pairwise (resp. mutually) independent.

### **Proof:**

#### **Definition**

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z]$$
, for all  $x, y, z$ .

#### **Theorem**

The events  $A, B, C, \ldots$  are pairwise (resp. mutually) independent iff the random variables  $1_A, 1_B, 1_C, \ldots$  are pairwise (resp. mutually) independent.

### **Proof:**

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C],...$$

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

**Example:** Flip two fair coins,  $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y.$ 

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y.$  Then, X, Y, Z are pairwise independent.

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y. \text{ Then, } X, Y, Z \text{ are pairwise independent. Let } g(Y, Z) = Y \oplus Z.$ 

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

f(X) and g(Y,Z) are not independent.

Example: Flip two fair coins,

 $X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y. \text{ Then,}$   $X, Y, Z \text{ are pairwise independent. Let } g(Y, Z) = Y \oplus Z. \text{ Then } g(Y, Z) = X \text{ is not independent of } X.$ 

One has the following result:

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

Let  $\{X_n, n \ge 1\}$  be mutually independent.

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$  are mutually independent.

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$  are mutually independent.

### Proof:

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

 $Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$  are mutually independent.

#### **Proof:**

Let  $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$ . Similarly for  $B_2, B_3$ .

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### Example:

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

 $Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$  are mutually independent.

#### **Proof:**

Let  $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\}$ . Similarly for  $B_2, B_3$ . Then

$$\textit{Pr}[\textit{Y}_1 \in \textit{A}_1, \textit{Y}_2 \in \textit{A}_2, \textit{Y}_3 \in \textit{A}_3]$$

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### **Example:**

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

$$Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11})$$
 are mutually independent.

#### **Proof:**

Let  $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$ . Similarly for  $B_2, B_3$ . Then

$$Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3]$$
  
=  $Pr[(X_1, ..., X_4) \in B_1, (X_5, ..., X_8) \in B_2, (X_9, ..., X_{11}) \in B_3]$ 

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### **Example:**

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

$$Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$$
 are mutually independent.

#### **Proof:**

Let  $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$ . Similarly for  $B_2, B_3$ . Then

$$\begin{split} & Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1] Pr[(X_5, \dots, X_8) \in B_2] Pr[(X_9, \dots, X_{11}) \in B_3] \end{split}$$

One has the following result:

#### **Theorem**

Functions of disjoint collections of mutually independent random variables are mutually independent.

### **Example:**

Let  $\{X_n, n \ge 1\}$  be mutually independent. Then,

$$Y_1:=X_1X_2(X_3+X_4)^2, Y_2:=\max\{X_5,X_6\}-\min\{X_7,X_8\}, Y_3:=X_9\cos(X_{10}+X_{11})$$
 are mutually independent.

#### **Proof:**

Let  $B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1x_2(x_3 + x_4)^2 \in A_1\}$ . Similarly for  $B_2, B_3$ . Then

$$\begin{split} & Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1, (X_5, \dots, X_8) \in B_2, (X_9, \dots, X_{11}) \in B_3] \\ & = Pr[(X_1, \dots, X_4) \in B_1] Pr[(X_5, \dots, X_8) \in B_2] Pr[(X_9, \dots, X_{11}) \in B_3] \\ & = Pr[Y_1 \in A_1] Pr[Y_2 \in A_2] Pr[Y_3 \in A_3] \end{split}$$

**Theorem** 

#### **Theorem**

Operations on disjoint collections of mutually independent events produce mutually independent events.

#### **Theorem**

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then  $A \triangle B, C \setminus D, \overline{E}$  are mutually independent.

#### **Theorem**

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then  $A \triangle B, C \setminus D, \overline{E}$  are mutually independent.

**Theorem** 

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs.

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

**Proof:** 

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

### **Proof:**

Assume that the result is true for *n*.

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[Y X_{n+1}],$$
  
=  $E[Y] E[X_{n+1}],$ 

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

#### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$
  
=  $E[Y]E[X_{n+1}],$   
because  $Y, X_{n+1}$  are independent

#### **Theorem**

Let  $X_1, ..., X_n$  be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n]=E[X_1]E[X_2]\cdots E[X_n].$$

#### **Proof:**

Assume that the result is true for n. (It is true for n = 2.)

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

$$= E[Y]E[X_{n+1}],$$
because  $Y, X_{n+1}$  are independent
$$= E[X_1] \cdots E[X_n]E[X_{n+1}].$$

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) =

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin:

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let *Y* be the RV indicating how much money you make.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make.

$$E(Y) =$$

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

Let Y be the RV indicating how much money you make. E(Y) = 0.

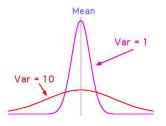
Any other measures???

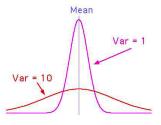
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. E(X) = 0.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.

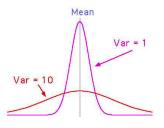
Let Y be the RV indicating how much money you make. E(Y) = 0.

Any other measures??? What else that's informative can we say?





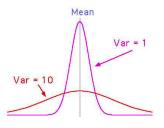
The variance measures the deviation from the mean value.



The variance measures the deviation from the mean value.

**Definition:** The variance of *X* is

### Variance

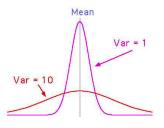


The variance measures the deviation from the mean value.

**Definition:** The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

### Variance



The variance measures the deviation from the mean value.

**Definition:** The variance of *X* is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$

 $\sigma(X)$  is called the standard deviation of X.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^2]$$

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$
  
=  $E[X^{2} - 2XE[X] + E[X]^{2}$ 

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$
  
=  $E[X^{2} - 2XE[X] + E[X]^{2}$   
=  $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$ 

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$
  
=  $E[X^{2} - 2XE[X] + E[X]^{2}$   
=  $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$  by linearity

Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

$$var(X) = E[(X - E[X])^{2}]$$
  
=  $E[X^{2} - 2XE[X] + E[X]^{2}$   
=  $E[X^{2}] - E[2XE[X]] + E[E[X]^{2}]$  by linearity  
=  $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$ ,

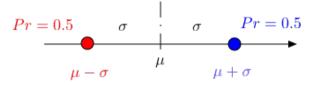
Fact:

$$var[X] = E[X^2] - E[X]^2$$
.

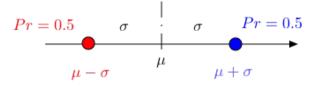
$$var(X) = E[(X - E[X])^2]$$
  
=  $E[X^2 - 2XE[X] + E[X]^2$   
=  $E[X^2] - E[2XE[X]] + E[E[X]^2]$  by linearity  
=  $E[X^2] - 2E[X]E[X] + E[X]^2$ ,  
=  $E[X^2] - E[X]^2$ .

This example illustrates the term 'standard deviation.'

This example illustrates the term 'standard deviation.'



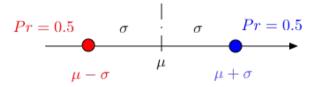
This example illustrates the term 'standard deviation.'



Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2 \\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

This example illustrates the term 'standard deviation.'

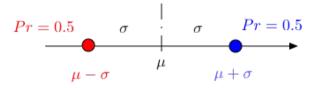


Consider the random variable X such that

$$X = \left\{ egin{array}{ll} \mu - \sigma, & ext{w.p. } 1/2 \\ \mu + \sigma, & ext{w.p. } 1/2. \end{array} 
ight.$$

Then,  $E[X] = \mu$  and  $(X - E[X])^2 = \sigma^2$ .

This example illustrates the term 'standard deviation.'



Consider the random variable X such that

$$X = \begin{cases} \mu - \sigma, & \text{w.p. } 1/2\\ \mu + \sigma, & \text{w.p. } 1/2. \end{cases}$$

Then,  $E[X] = \mu$  and  $(X - E[X])^2 = \sigma^2$ . Hence,

$$var(X) = \sigma^2$$
 and  $\sigma(X) = \sigma$ .

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
  
 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$ 

Consider X with

$$X = \begin{cases} -1, & \text{w. p. } 0.99 \\ 99, & \text{w. p. } 0.01. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
  
 $E[X^2] = 1 \times 0.99 + (99)^2 \times 0.01 \approx 100.$   
 $Var(X) \approx 100 \implies \sigma(X) \approx 10.$ 

1.  $Var(cX) = c^2 Var(X)$ , where c is a constant.

1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant.

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$
  
=  $c^2 E(X^2) - c^2 (E(X))^2$ 

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^2) - (E(cX))^2$$
  
=  $c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$ 

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2})$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$

- 1.  $Var(cX) = c^2 Var(X)$ , where c is a constant. Scales by  $c^2$ .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

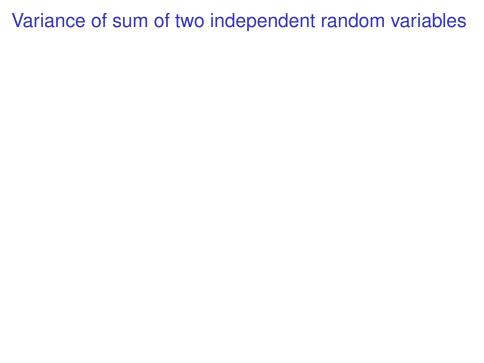
$$= c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$$

$$= c^{2}Var(X)$$

$$Var(X+c) = E((X+c-E(X+c))^{2})$$

$$= E((X+c-E(X)-c)^{2})$$

$$= E((X-E(X))^{2}) = Var(X)$$



#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2)$$

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y)$$
.

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$
  
=  $E(X^2) + 2E(XY) + E(Y^2)$ 

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$
  
=  $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$ 

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$
  
=  $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$   
=  $E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2$ 

#### Theorem:

If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

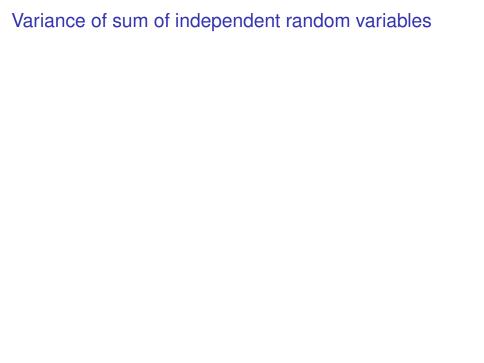
Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$

$$= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 = var(X) + var(Y).$$



Theorem:

If  $X, Y, Z, \dots$  are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0.$$

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also,  $E[XZ] = E[YZ] = \cdots = 0$ .

#### Theorem:

If  $X, Y, Z, \dots$  are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also,  $E[XZ] = E[YZ] = \cdots = 0$ .

$$var(X+Y+Z+\cdots) = E((X+Y+Z+\cdots)^2)$$

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also,  $E[XZ] = E[YZ] = \cdots = 0$ .

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$
  
=  $E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$ 

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### **Proof:**

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also,  $E[XZ] = E[YZ] = \cdots = 0$ .

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

#### Theorem:

If X, Y, Z, ... are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots$$

#### Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that  $E[X] = E[Y] = \cdots = 0$ .

Then, by independence,

$$E[XY] = E[X]E[Y] = 0$$
. Also,  $E[XZ] = E[YZ] = \cdots = 0$ .

$$var(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^{2})$$

$$= E(X^{2} + Y^{2} + Z^{2} + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$

$$= E(X^{2}) + E(Y^{2}) + E(Z^{2}) + \cdots + 0 + \cdots + 0$$

$$= var(X) + var(Y) + var(Z) + \cdots$$



Gigs so far:

1. How to tell random from human.

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

### Today:

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?



Wait...

### Gigs so far:

- 1. How to tell random from human.
- 2. Monty Hall.
- 3. Birthday Paradox.
- 4. St. Petersburg paradox

Today: Simpson's paradox.

How come this show is still around?



Wait... Wrong Simpson.

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

| Smoker | Dead | Alive | Total | % Dead |  |  |
|--------|------|-------|-------|--------|--|--|
| Yes    | 139  | 443   | 582   | 24     |  |  |
| No     | 230  | 502   | 732   | 31     |  |  |
| Total  | 369  | 945   | 1314  | 28     |  |  |

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

| Smoker | Dead | Alive | Total | % Dead |
|--------|------|-------|-------|--------|
| Yes    | 139  | 443   | 582   | 24     |
| No     | 230  | 502   | 732   | 31     |
| Total  | 369  | 945   | 1314  | 28     |

Not smoking kills!

In 1314 English women were surveyed in 1972-1974 and again after 20 years about smoking:

| Smoker | Dead | Alive | Total | % Dead |
|--------|------|-------|-------|--------|
| Yes    | 139  | 443   | 582   | 24     |
| No     | 230  | 502   | 732   | 31     |
| Total  | 369  | 945   | 1314  | 28     |

Not smoking kills!

A closer look:

### A closer look:

| Age group | 18–24 |    | 25-34 |     | 35–44 |     | 45–54 |    | 55–54 |    |
|-----------|-------|----|-------|-----|-------|-----|-------|----|-------|----|
| Smoker    | Y     | N  | Y     | N   | Y     | N   | Y     | N  | Y     | N  |
| Dead      | 2     | 1  | 3     | 5   | 11    | 7   | 27    | 12 | 51    | 40 |
| Alive     | 53    | 61 | 121   | 152 | 95    | 114 | 103   | 66 | 64    | 81 |
| Ratio     | 2.3   |    | 0.75  |     | 2.4   |     | 1.44  |    | 1.    | 61 |

#### A closer look:

| Age group | 18–24 |    | 25-34 |     | 35–44 |     | 45–54 |    | 55–54 |    |
|-----------|-------|----|-------|-----|-------|-----|-------|----|-------|----|
| Smoker    | Y     | N  | Y     | N   | Y     | N   | Y     | N  | Y     | N  |
| Dead      | 2     | 1  | 3     | 5   | 11    | 7   | 27    | 12 | 51    | 40 |
| Alive     | 53    | 61 | 121   | 152 | 95    | 114 | 103   | 66 | 64    | 81 |
| Ratio     | 2.3   |    | 0.75  |     | 2.4   |     | 1.44  |    | 1.61  |    |

In each separate category, the percentage of fatalities among smokers is higher, and yet the overall percentage of fatalities among smokers is lower!

## Summary

Random Variables

- ▶ A random variable X is a function  $X : \Omega \to \Re$ .
- ►  $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶  $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability:  $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- g(X, Y, Z) assigns the value .... .
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.
- Independent Random Variables.
- Variance.