
Alex Psomas: Lecture 17.

Random Variables: Expectation, Variance

1. Random Variables, Expectation: Brief Review
2. Independent Random Variables.
3. Variance

Random Variables: Definitions

Definition
A random variable, X , for a random experiment with sample space Ω
is a variable that takes as value one of the random samples.
NO!

Random Variables: Definitions
Definition
A random variable, X , for a random experiment with sample space Ω
is a function X : Ω→ ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

Definitions
(a) For a ∈ ℜ, one defines the event

X−1(a) := {ω ∈ Ω | X (ω) = a}.
(b) For A ⊂ ℜ, one defines the event

X−1(A) := {ω ∈ Ω | X (ω) ∈ A}.
(c) The probability that X = a is defined as

Pr [X = a] = Pr [X−1(a)].
(d) The probability that X ∈ A is defined as

Pr [X ∈ A] = Pr [X−1(A)].
(e) The distribution of a random variable X , is

{(a,Pr [X = a]) : a ∈ A },
where A is the range of X . That is, A = {X (ω),ω ∈ Ω}.

An Example

Flip a fair coin three times.

Ω= {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.

X = number of H ’s: {3,2,2,2,1,1,1,0}.

� Range of X? {0,1,2,3}. All the values X can take.
� X−1(2)? X−1(2) = {HHT ,HTH,THH}. All the outcomes ω

such that X (ω) = 2.
� Is X−1(1) an event? YES. It’s a subset of the outcomes.
� Pr [X ]? This doesn’t make any sense bro....
� Pr [X = 2]?

Pr [X = 2] = Pr [X−1(2)] = Pr [{HHT ,HTH,THH}]

= Pr [{HHT}]+Pr [{HTH}]+Pr [{THH}] = 3
8

Random Variables: Definitions

Let X ,Y ,Z be random variables on Ω and g : ℜ3 → ℜ a
function. Then g(X ,Y ,Z ) is the random variable that assigns
the value g(X (ω),Y (ω),Z (ω)) to ω.

Thus, if V = g(X ,Y ,Z ), then V (ω) := g(X (ω),Y (ω),Z (ω)).

Examples:

� X k

� (X −a)2

� a+bX +cX 2 +(Y −Z )2

� (X −Y )2

� X cos(2πY +Z ).

Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

E [X ] = ∑
a

a×Pr [X = a].

Theorem:

E [X ] = ∑
ω

X (ω)×Pr [ω].



An Example

Flip a fair coin three times.
Ω= {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}. X =
number of H ’s: {3,2,2,2,1,1,1,0}. Thus,
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Also,
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Win or Lose.
Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
{HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}→ {3,1,1,−1,1,−1,−1,−3}.

E [X ] = 3
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Can you ever win 0?

Apparently: Expected value is not a common value. It doesn’t have to
be in the range of X .

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment
many times. Let X1 be your winnings the first time you play the game,
X2 are your winnings the second time you play the game, and so on.
(Notice that Xi ’s have the same distribution!) When n � 1 :

X1 + · · ·+Xn

n
→ 0

The fact that this average converges to E [X ] is a theorem: the Law of
Large Numbers. (See later.)

Law of Large Numbers
An Illustration: Rolling Dice

Indicators

Definition
Let A be an event. The random variable X defined by

X (ω) =

�
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,

E [X ] = 1×Pr [X = 1]+0×Pr [X = 0] = Pr [A].

This random variable X (ω) is sometimes written as

1{ω ∈ A} or 1A(ω).

Thus, we will write X = 1A.

Linearity of Expectation

Theorem: Expectation is linear

E [a1X1 + · · ·+anXn] = a1E [X1]+ · · ·+anE [Xn].

Proof:

E [a1X1 + · · ·+anXn]

= ∑
ω

(a1X1 + · · ·+anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω)+ · · ·+anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω]+ · · ·+an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1]+ · · ·+anE [Xn].

Note: If we had defined Y = a1X1 + · · ·+anXn has had tried to
compute E [Y ] = ∑y yPr [Y = y ], we would have been in trouble!

Using Linearity - 1: Dots on dice

Roll a die n times.

Xm = number of dots on roll m.

X = X1 + · · ·+Xn = total number of dots in n rolls.

E [X ] = E [X1 + · · ·+Xn]

= E [X1]+ · · ·+E [Xn], by linearity
= nE [X1], because the Xm have the same distribution

Now,

E [X1] = 1× 1
6
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6
=

6×7
2

× 1
6
=

7
2
.

Hence,

E [X ] =
7n
2
.

Note: Computing ∑x xPr [X = x ] directly is not easy!



Using Linearity - 2: Expected number of times a word
appears.

Alex is typing a document randomly: Each letter has a
probability of 1

26 of being types. The document will be
100,000,000 letters long. What is the expected number of times
that the word ”pizza” will appear?

Let X be a random variable that counts the number of times the
word ”pizza” appears. We want E(X ).

E(X ) = ∑
ω

X (ω)Pr [ω].

Better approach: Let Xi be the indicator variable that takes
value 1 if ”pizza” starts on the i-th letter, and 0 otherwise. i
takes from 1 to 100,000−4 = 999,999,996.

hpizzafgnpizzadjgbidgne....

X2 = 1, X10 = 1,...

Using Linearity - 2: Expected number of times a word
appears.

E(Xi) = (
1

26
)5

Therefore,

E(X ) = E(∑
i

Xi) = ∑
i

E(Xi) = 999,999,996(
1
26

)5 ≈ 84

Using Linearity - 3: The birthday paradox
Let X be the random variable indicating the number of pairs of
people, in a group of k people, sharing the same birthday.
What’s E(X )?

Let Xi ,j be the indicator random variable for the event that two
people i and j have the same birthday. X = ∑i ,j Xi ,j .

E [X ] = E [∑
i ,j

Xi ,j ]

= ∑
i ,j

E [Xi ,j ]

= ∑
i ,j

Pr [Xi ,j ]

= ∑
i ,j
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For a group of 28 it’s about 1. For 100 it’s 13.5. For 280 it’s 107.

Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

x∈A (X )

g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].

An Example
Let X be uniform in {−2,−1,0,1,2,3}.

Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4+1+0+1+4+9}1
6
=
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6
.

Method 1 - We find the distribution of Y = X 2:

Y =





4, w.p. 2
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0, w.p. 1
6
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Thus,
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Calculating E [g(X ,Y ,Z )]
We have seen that E [g(X )] = ∑x g(x)Pr [X = x ].

Using a similar derivation, one can show that

E [g(X ,Y ,Z )] = ∑
x ,y ,z

g(x ,y ,z)Pr [X = x ,Y = y ,Z = z].

An Example. Let X ,Y be as shown below:
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8
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>>:

(0, 0), w.p. 0.1
(1, 0), w.p. 0.4
(0, 1), w.p. 0.2
(1, 1), w.p. 0.3

E [cos(2πX +πY )] = 0.1cos(0)+0.4cos(2π)+0.2cos(π)+0.3cos(3π)

= 0.1×1+0.4×1+0.2× (−1)+0.3× (−1) = 0.



Center of Mass

The expected value has a center of mass interpretation:
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Best Guess: Least Squares

If you only know the distribution of X , it seems that E [X ] is a
‘good guess’ for X .

The following result makes that idea precise.

Theorem
The value of a that minimizes E [(X −a)2] is a = E [X ].

Unfortunately, we won’t talk about this in this class...

Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

Pr [Y = b|X = a] = Pr [Y = b], for all a and b.

Fact:

X ,Y are independent if and only if

Pr [X = a,Y = b] = Pr [X = a]Pr [Y = b], for all a and b.

Obvious.

Independence: Examples

Example 1
Roll two die. X = number of dots on the first one, Y = number
of dots on the other one. X ,Y are independent.

Indeed: Pr [X = a,Y = b] = 1
36 ,Pr [X = a] = Pr [Y = b] = 1

6 .

Example 2
Roll two die. X = total number of dots, Y = number of dots on
die 1 minus number on die 2. X and Y are not independent.

Indeed: Pr [X = 12,Y = 1] = 0 �= Pr [X = 12]Pr [Y = 1]> 0.

Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X ,Y be independent RV. Then

f (X ) and g(Y ) are independent, for all f (·),g(·).

Mean of product of independent RV

Theorem
Let X ,Y be independent RVs. Then

E [XY ] = E [X ]E [Y ].

Proof:
Recall that E [g(X ,Y )] = ∑x ,y g(x ,y)Pr [X = x ,Y = y ]. Hence,

E [XY ] = ∑
x ,y

xyPr [X = x ,Y = y ] = ∑
x ,y

xyPr [X = x ]Pr [Y = y ], by ind.

= ∑
x
[∑

y
xyPr [X = x ]Pr [Y = y ]] = ∑

x
[xPr [X = x ](∑

y
yPr [Y = y ])]

= ∑
x
[xPr [X = x ]E [Y ]] = E [X ]E [Y ].



Examples
(1) Assume that X ,Y ,Z are (pairwise) independent, with
E [X ] = E [Y ] = E [Z ] = 0 and E [X 2] = E [Y 2] = E [Z 2] = 1.

Wait. Isn’t X independent with itself? No. If I tell you the value
of X , then you know the value of X .

Then

E [(X +2Y +3Z )2] = E [X 2 +4Y 2 +9Z 2 +4XY +12YZ +6XZ ]

= 1+4+9+4×0+12×0+6×0
= 14.

(2) Let X ,Y be independent and take values from {1,2, . . .n}
uniformly at random. Then

E [(X −Y )2] = E [X 2 +Y 2 −2XY ] = 2E [X 2]−2E [X ]2

=
1+3n+2n2

3
− (n+1)2

2
.

Mutually Independent Random Variables

Definition

X ,Y ,Z are mutually independent if

Pr [X = x ,Y = y ,Z = z] =Pr [X = x ]Pr [Y = y ]Pr [Z = z], for all x ,y ,z.

Theorem
The events A,B,C, . . . are pairwise (resp. mutually)
independent iff the random variables 1A,1B,1C , . . . are pairwise
(resp. mutually) independent.
Proof:

Pr [1A = 1,1B = 1,1C = 1] = Pr [A∩B∩C], . . .

Functions of pairwise independent RVs

If X ,Y ,Z are pairwise independent, but not mutually
independent, it may be that

f (X ) and g(Y ,Z ) are not independent.

Example: Flip two fair coins,
X = 1{coin 1 is H},Y = 1{coin 2 is H},Z = X ⊕Y . Then,
X ,Y ,Z are pairwise independent. Let g(Y ,Z ) = Y ⊕Z . Then
g(Y ,Z ) = X is not independent of X .

Functions of mutually independent RVs
One has the following result:
Theorem
Functions of disjoint collections of mutually independent random
variables are mutually independent.
Example:
Let {Xn,n ≥ 1} be mutually independent. Then,

Y1 :=X1X2(X3+X4)
2,Y2 :=max{X5,X6}−min{X7,X8},Y3 :=X9 cos(X10+X11)

are mutually independent.
Proof:
Let B1 := {(x1,x2,x3,x4) | x1x2(x3 +x4)

2 ∈ A1}. Similarly for B2,B3.
Then

Pr [Y1 ∈ A1,Y2 ∈ A2,Y3 ∈ A3]

= Pr [(X1, . . . ,X4) ∈ B1,(X5, . . . ,X8) ∈ B2,(X9, . . . ,X11) ∈ B3]

= Pr [(X1, . . . ,X4) ∈ B1]Pr [(X5, . . . ,X8) ∈ B2]Pr [(X9, . . . ,X11) ∈ B3]

= Pr [Y1 ∈ A1]Pr [Y2 ∈ A2]Pr [Y3 ∈ A3]

Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events
produce mutually independent events.

For instance, if A,B,C,D,E are mutually independent, then
AΔB,C \D, Ē are mutually independent.

Product of mutually independent RVs

Theorem
Let X1, . . . ,Xn be mutually independent RVs. Then,

E [X1X2 · · ·Xn] = E [X1]E [X2] · · ·E [Xn].

Proof:

Assume that the result is true for n. (It is true for n = 2.)

Then, with Y = X1 · · ·Xn, one has

E [X1 · · ·XnXn+1] = E [YXn+1],

= E [Y ]E [Xn+1],

because Y ,Xn+1 are independent
= E [X1] · · ·E [Xn]E [Xn+1].



Variance

Flip a coin: If H you make a dollar. If T you lose a dollar.
Let X be the RV indicating how much money you make.

E(X ) = 0.

Flip a coin: If H you make a million dollars. If T you lose a
million dollars.
Let Y be the RV indicating how much money you make.

E(Y ) = 0.

Any other measures??? What else that’s informative can we
say?

Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ
2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .

Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2 −2XE [X ]+E [X ]2

= E [X 2]−E [2XE [X ]]+E [E [X ]2] by linearity
= E [X 2]−2E [X ]E [X ]+E [X ]2,

= E [X 2]−E [X ]2.

A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

�
µ −σ , w.p. 1/2
µ +σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ
2. Hence,

var(X ) = σ
2 and σ(X ) = σ .

Example

Consider X with

X =

�
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99+99×0.01 = 0.
E [X 2] = 1×0.99+(99)2 ×0.01 ≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.
Scales by c2.

2. Var(X +c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X +c) = E((X +c−E(X +c))2)

= E((X +c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )



Variance of sum of two independent random variables
Theorem:
If X and Y are independent, then

Var(X +Y ) = Var(X )+Var(Y ).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X ) = 0 and E(Y ) = 0.

Then, by independence,

E(XY ) = E(X )E(Y ) = 0.

Hence,

var(X +Y ) = E((X +Y )2) = E(X 2 +2XY +Y 2)

= E(X 2)+2E(XY )+E(Y 2) = E(X 2)+E(Y 2)

= E(X 2)− (E(X ))2 +E(Y 2)− (E(Y ))2 = var(X )+var(Y ).

Variance of sum of independent random variables
Theorem:
If X ,Y ,Z , . . . are pairwise independent, then

var(X +Y +Z + · · ·) = var(X )+var(Y )+var(Z )+ · · · .
Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E [X ] = E [Y ] = · · ·= 0.

Then, by independence,

E [XY ] = E [X ]E [Y ] = 0. Also, E [XZ ] = E [YZ ] = · · ·= 0.

Hence,

var(X +Y +Z + · · ·) = E((X +Y +Z + · · ·)2)

= E(X 2 +Y 2 +Z 2 + · · ·+2XY +2XZ +2YZ + · · ·)
= E(X 2)+E(Y 2)+E(Z 2)+ · · ·+0+ · · ·+0
= var(X )+var(Y )+var(Z )+ · · · .

Today’s gig: Lies!

Gigs so far:
1. How to tell random from human.
2. Monty Hall.
3. Birthday Paradox.
4. St. Petersburg paradox

Today: Simpson’s paradox.
How come this show is still around?

Wait... Wrong Simpson.

The paradox

In 1314 English women were surveyed in 1972-1974 and again
after 20 years about smoking:

Not smoking kills!

The paradox

A closer look:

In each separate category, the percentage of fatalities among
smokers is higher, and yet the overall percentage of fatalities
among smokers is lower!

Summary Random Variables

� A random variable X is a function X : Ω→ ℜ.
� Pr [X = a] := Pr [X−1(a)] = Pr [{ω | X (ω) = a}].
� Pr [X ∈ A] := Pr [X−1(A)].
� The distribution of X is the list of possible values and their

probability: {(a,Pr [X = a]),a ∈ A }.
� g(X ,Y ,Z ) assigns the value .... .
� E [X ] := ∑a aPr [X = a].
� Expectation is Linear.
� Independent Random Variables.
� Variance.


