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3 closed doors. Behind one of the doors there is a prize (car).
The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I know doesn’t
have the prize. Say it was door 2

I ask: Would you like to change your door to number 3?

Question: What should you do in order to maximize the
probability of winning?
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Change!!!!

What is the probability that the prize is in door 3? 2
3 !

How does that make any sense????

Say the original door where the prize is random. So each door
has probability 1

3 .

You pick door 1. What’s the probability that it’s in either 2 or 3?
2
3

The door I opened wasn’t random! I knew it didn’t have a prize!!
Therefore, switching, is like getting to pick two doors at the
beginning!
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Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

� Right: A and B are negatively correlated.
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Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] = 0.5×0.5+0.5×0.6 = Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]

Pr [A|B] =
0.5×0.5

0.5×0.5+0.5×0.6
=

Pr [A]Pr [B|A]
Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]

≈ 0.46 = fraction of B that is inside A
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Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Pr [Am] = pm,m = 1, . . . ,M
Pr [B|Am] = qm,m = 1, . . . ,M;Pr [Am ∩B] = pmqm

Pr [B] = p1q1 + · · ·pMqM

Pr [Am|B] =
pmqm

p1q1 + · · ·pMqM
= fraction of B inside Am.
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8 ×1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.42

The values 0.58,5×10−8,0.42 are the posterior probabilities.
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Why do you have a fever?
Our “Bayes’ Square” picture:

Flu

Other

Ebola

58% of Fever = Flu

42% of Fever = Other
⇡ 0% of Fever = Ebola

0.15

0.85

⇡ 0

0.80

0.10

1

Green = Fever

Note that even though Pr [Fever|Ebola] = 1, one has

Pr [Ebola|Fever]≈ 0.

This example shows the importance of the prior probabilities.
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Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information
changes our opinions.
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Independence
Recall :

A and B are independent
⇔ Pr [A∩B] = Pr [A]Pr [B]

⇔ Pr [A|B] = Pr [A].

Consider the example below:

0.1

0.25

0.15

0.15

0.25

0.1

A1

A2

A3

B B̄

(A2,B) are independent: Pr [A2|B] = 0.5 = Pr [A2].
(A2, B̄) are independent: Pr [A2|B̄] = 0.5 = Pr [A2].
(A1,B) are not independent: Pr [A1|B] = 0.1

0.5 = 0.2 �= Pr [A1] = 0.25.
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Pairwise Independence
Flip two fair coins. Let

� A = ‘first coin is H’ = {HT ,HH};
� B = ‘second coin is H’ = {TH,HH};
� C = ‘the two coins are different’ = {TH,HT}.

A,C are independent; B,C are independent;
A∩B,C are not independent. (Pr [A∩B∩C] = 0 �= Pr [A∩B]Pr [C].)

A did not say anything about C and B did not say anything
about C, but A∩B said something about C!
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Example 2

Flip a fair coin 5 times. Let An = ‘coin n is H’, for n = 1, . . . ,5.

Then,
Am,An are independent for all m �= n.

Also,
A1 and A3 ∩A5 are independent.

Indeed,

Pr [A1 ∩ (A3 ∩A5)] =
1
8
= Pr [A1]Pr [A3 ∩A5]

. Similarly,

A1 ∩A2 and A3 ∩A4 ∩A5 are independent.

This leads to a definition ....
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Definition Mutual Independence

(a) The events A1, . . . ,A5 are mutually independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all K ⊆ {1, . . . ,5}.

(b) More generally, the events {Aj , j ∈ J} are mutually
independent if

Pr [∩k∈K Ak ] = Πk∈K Pr [Ak ], for all finiteK ⊆ J.

Example: Flip a fair coin forever. Let An = ‘coin n is H.’ Then the
events An are mutually independent.
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Mutual Independence

Theorem

(a) If the events {Aj , j ∈ J} are mutually independent and if K1
and K2 are disjoint finite subsets of J, then

∩k∈K1Ak and ∩k∈K2 Ak are independent.

(b) More generally, if the Kn are pairwise disjoint finite subsets
of J, then the events

∩k∈KnAk are mutually independent.

(c) Also, the same is true if we replace some of the Ak by Āk .
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Balls in bins

One throws m balls into n > m bins.

Theorem:
Pr [no collision]≈ exp{−m2

2n }, for large enough n.
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(∗) We used ln(1− ε)≈−ε for |ε|� 1.
(†) 1+2+ · · ·+m−1 = (m−1)m/2.



Approximation

exp{−x}= 1−x +
1
2!

x2 + · · ·≈ 1−x , for |x |� 1.

Hence, −x ≈ ln(1−x) for |x |� 1.
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Theorem:
Pr [no collision]≈ exp{−m2

2n }, for large enough n.

In particular, Pr [no collision]≈ 1/2 for m2/(2n)≈ ln(2), i.e.,

m ≈
�

2ln(2)n ≈ 1.2
√

n.

E.g., 1.2
√

20 ≈ 5.4.

Roughly, Pr [collision]≈ 1/2 for m =
√

n. (e−0.5 ≈ 0.6.)
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Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365 ≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
}≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9ln(m)+9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)}≈ 1−m2/(2n).
Hence,

Pr [no collision]≈ 1−10−3 ⇔ m2/(2n)≈ 10−3

⇔ 2n ≈ m2103 ⇔ 2b+1 ≈ m2210

⇔ b+1 ≈ 10+2log2(m)≈ 10+2.9ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44ln(x).
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There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−m
n

(b) Pr [miss any one of the items]≤ ne−m
n .
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Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n
)×·· ·× (1− 1

n
)

= (1− 1
n
)m

ln(Pr [Am]) = m ln(1− 1
n
)≈ m× (−1

n
)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2 ≈ 0.69n boxes.



Collect all cards?

Experiment: Choose m cards at random with replacement.



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p?



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1 ∪E2 · · ·∪En]≤ Pr [E1]+Pr [E2] · · ·Pr [En].



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1 ∪E2 · · ·∪En]≤ Pr [E1]+Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−m
n ,k = 1, . . . ,n.



Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1 ∪E2 · · ·∪En]≤ Pr [E1]+Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−m

n .
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Thus,

Pr [missing at least one card]≤ ne−m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p
).

To get p = 1/2, set m = n ln(2n) .

E.g., n = 102 ⇒ m = 530;n = 103 ⇒ m = 7600.
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Key Mathematical Fact: ln(1− ε)≈−ε .


