Alex Psomas: Lecture 15.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Alex Psomas: Lecture 15.

Bayes' Rule, Mutual Independence, Collisions and Collecting

- 1. Conditional Probability
- 2. Independence
- 3. Bayes' Rule
- 4. Balls and Bins
- 5. Coupons

Recall:

▶
$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$
.

Recall:

•
$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$
.

• Hence,
$$Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$$
.

Recall:

•
$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

• Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.

► A and B are positively correlated if Pr[A|B] > Pr[A],

Recall:

▶ $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$.

• Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.

A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if Pr[A∩B] > Pr[A]Pr[B].

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- ► A and B are negatively correlated if Pr[A|B] < Pr[A],

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- A and B are independent if Pr[A|B] = Pr[A],

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- A and B are *independent* if Pr[A|B] = Pr[A], i.e., if Pr[A∩B] = Pr[A]Pr[B].

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A], i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- A and B are *independent* if Pr[A|B] = Pr[A],
 i.e., if Pr[A∩B] = Pr[A]Pr[B].
- ▶ Note: $B \subset A$, and $Pr[A] \neq 1$, $Pr[B] \neq 0$, $\Rightarrow A$ and B are

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- ► A and B are *independent* if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: B ⊂ A, and Pr[A] ≠ 1, Pr[B] ≠ 0, ⇒ A and B are positively correlated.

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- ► A and B are *independent* if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: B ⊂ A, and Pr[A] ≠ 1, Pr[B] ≠ 0, ⇒ A and B are positively correlated. (Pr[A|B] = 1 > Pr[A])

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- A and B are *independent* if Pr[A|B] = Pr[A],
 i.e., if Pr[A∩B] = Pr[A]Pr[B].
- Note: B ⊂ A, and Pr[A] ≠ 1, Pr[B] ≠ 0, ⇒ A and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- ▶ Note: $A \cap B = \emptyset$, $Pr[A], Pr[B] \neq 0$, $\Rightarrow A$ and B are

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- ► A and B are *independent* if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: B ⊂ A, and Pr[A] ≠ 1, Pr[B] ≠ 0, ⇒ A and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- Note: A∩B = Ø, Pr[A], Pr[B] ≠ 0, ⇒ A and B are negatively correlated.

Recall:

- Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- A and B are *independent* if Pr[A|B] = Pr[A], i.e., if Pr[A∩B] = Pr[A]Pr[B].
- Note: B ⊂ A, and Pr[A] ≠ 1, Pr[B] ≠ 0, ⇒ A and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- Note: A∩B = Ø, Pr[A], Pr[B] ≠ 0, ⇒ A and B are negatively correlated. (Pr[A|B] = 0 < Pr[A])</p>

3 closed doors.

3 closed doors. Behind one of the doors there is a prize (car).

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I **know** doesn't have the prize.

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I **know** doesn't have the prize. Say it was door 2

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I **know** doesn't have the prize. Say it was door 2

I ask: Would you like to change your door to number 3?

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I **know** doesn't have the prize. Say it was door 2

I ask: Would you like to change your door to number 3?

Question: What should you do in order to maximize the probability of winning?

Change!!!!

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$! How does that make any sense????

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$! How does that make any sense????

Say the original door where the prize is random.

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1.

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1. What's the probability that it's in either 2 or 3?

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1. What's the probability that it's in either 2 or 3? $\frac{2}{3}$

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1. What's the probability that it's in either 2 or 3? $\frac{2}{3}$

The door I opened wasn't random! I knew it didn't have a prize!!
Monty Hall

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1. What's the probability that it's in either 2 or 3? $\frac{2}{3}$

The door I opened wasn't random! I knew it didn't have a prize!! Therefore, switching, is like getting to pick two doors at the beginning!

I throw 5 (indistinguishable) balls in two bins.

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

 Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5).

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart.

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- Approach 2: I pretend I can tell the balls apart. There are 2⁵ outcomes:

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- Approach 2: I pretend I can tell the balls apart. There are 2⁵ outcomes: (1,1,1,1,1),

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2⁵ outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2).

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$.

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- 1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well...

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Or.....

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- 1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Or..... Could one of the approaches be wrong???

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Or..... Could one of the approaches be wrong???

Approach 1 is WRONG!

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Or..... Could one of the approaches be wrong???

Approach 1 is WRONG! Why did we divide by $|\Omega|$???

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Or..... Could one of the approaches be wrong??? Approach 1 is WRONG! Why did we divide by $|\Omega|$??? Why?????? Nooooooooooooooooo

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is ¹/₆
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong...

Illustrations: Pick a point uniformly in the unit square

Left: A and B are

Illustrations: Pick a point uniformly in the unit square

Left: A and B are independent.

Illustrations: Pick a point uniformly in the unit square

• Left: A and B are independent. Pr[B] =

Illustrations: Pick a point uniformly in the unit square

• Left: A and B are independent. Pr[B] = b;

Illustrations: Pick a point uniformly in the unit square

• Left: A and B are independent. Pr[B] = b; Pr[B|A] =

Illustrations: Pick a point uniformly in the unit square

• Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated.

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- Middle: A and B are positively correlated.
 Pr[B|A] =

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ► Middle: A and B are positively correlated. Pr[B|A] = b₁ > Pr[B|Ā] =

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ► Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2.$

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- Right: A and B are

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- Right: A and B are negatively correlated.

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ► Right: A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2.$

- Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: *A* and *B* are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: *A* and *B* are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

$$Pr[A] =$$

$$Pr[A] = 0.5;$$

$$Pr[A] = 0.5; Pr[\overline{A}] =$$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$
$$Pr[B|A] =$$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5;$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5; Pr[B|\bar{A}] =$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6;$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] =$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

 $Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$
 $Pr[B] =$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

$$Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$$

$$Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6$$

$$\begin{aligned} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5\\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5\\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \end{aligned}$$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

$$Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$$

$$Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

$$Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6}$$

$$Pr[A] = 0.5; Pr[\bar{A}] = 0.5$$

$$Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5$$

$$Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

$$Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]}$$

$$\begin{aligned} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5\\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5\\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]\\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]}\\ & \approx 0.46\end{aligned}$$

$$\begin{aligned} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5\\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5\\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]\\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]}\\ & \approx 0.46 = \text{fraction of B that is inside A} \end{aligned}$$

$$Pr[A_m] = p_m, m = 1, \ldots, M$$

$$Pr[A_m] = p_m, m = 1, ..., M$$

 $Pr[B|A_m] = q_m, m = 1, ..., M;$

$$Pr[A_m] = p_m, m = 1, \dots, M$$
$$Pr[B|A_m] = q_m, m = 1, \dots, M; Pr[A_m \cap B] =$$

$$Pr[A_m] = p_m, m = 1, \dots, M$$
$$Pr[B|A_m] = q_m, m = 1, \dots, M; Pr[A_m \cap B] = p_m q_m$$

$$Pr[A_m] = p_m, m = 1, \dots, M$$

$$Pr[B|A_m] = q_m, m = 1, \dots, M; Pr[A_m \cap B] = p_m q_m$$

$$Pr[B] = p_1 q_1 + \cdots p_M q_M$$

$$Pr[A_m] = p_m, m = 1, \dots, M$$

$$Pr[B|A_m] = q_m, m = 1, \dots, M; Pr[A_m \cap B] = p_m q_m$$

$$Pr[B] = p_1 q_1 + \cdots p_M q_M$$

$$Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots p_M q_M}$$

$$Pr[A_m] = p_m, m = 1, \dots, M$$

$$Pr[B|A_m] = q_m, m = 1, \dots, M; Pr[A_m \cap B] = p_m q_m$$

$$Pr[B] = p_1 q_1 + \cdots p_M q_M$$

$$Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots p_M q_M} = \text{ fraction of } B \text{ inside } A_m.$$

Why do you have a fever?

Why do you have a fever?

Our "Bayes' Square" picture:

Our "Bayes' Square" picture:

Our "Bayes' Square" picture:


```
Note that even though Pr[Fever|Ebola] = 1,
```

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

This example shows the importance of the prior probabilities.

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

A and B are independent

> A and B are independent $\Rightarrow Pr[A \cap B] = Pr[A]Pr[B]$

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent:

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$.

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \overline{B}) are independent:

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \overline{B}) are independent: $Pr[A_2|\overline{B}] = 0.5 = Pr[A_2]$.

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \overline{B}) are independent: $Pr[A_2|\overline{B}] = 0.5 = Pr[A_2]$. (A_1, B) are not independent:

A and B are independent $\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$ $\Leftrightarrow Pr[A|B] = Pr[A].$

Consider the example below:

 (A_2, B) are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$. (A_1, B) are not independent: $Pr[A_1|B] = \frac{0.1}{0.5} = 0.2 \neq Pr[A_1] = 0.25$.

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

A, C are independent;

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

A, C are independent; B, C are independent;

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

A, C are independent; B, C are independent; $A \cap B$, C are not independent.

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.

A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

A did not say anything about C and B did not say anything about C, but $A \cap B$ said something about C!

Flip a fair coin 5 times.

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5.

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

 A_m, A_n are independent for all $m \neq n$.

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

 A_m, A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

 A_m, A_n are independent for all $m \neq n$.

Also,

٠

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5]$$

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

$$A_m, A_n$$
 are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5]$$

. Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.
Example 2

Flip a fair coin 5 times. Let A_n = 'coin *n* is H', for n = 1, ..., 5. Then,

$$A_m, A_n$$
 are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5]$$

. Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition

Definition Mutual Independence

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

 $Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$, for all $K \subseteq \{1,\ldots,5\}$.

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

 $Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$, for all $K \subseteq \{1,\ldots,5\}$.

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k], \text{ for all } K \subseteq \{1,\ldots,5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all finite $K \subseteq J$.

Definition Mutual Independence

(a) The events A_1, \ldots, A_5 are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k], \text{ for all } K \subseteq \{1,\ldots,5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in K}A_k] = \prod_{k\in K}Pr[A_k]$$
, for all finite $K \subseteq J$.

Example: Flip a fair coin forever. Let $A_n = \text{`coin } n$ is H.' Then the events A_n are mutually independent.

Theorem

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of *J*, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of *J*, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

 A_i = no collision when *i*th ball is placed in a bin.

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] =$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] =$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$ $Pr[A_3|A_1, A_2] =$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$ $Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$ $Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}$ $Pr[A_i|A_{i-1} \cap \cdots \cap A_1] =$

 $A_{i} = \text{no collision when } i\text{th ball is placed in a bin.}$ $Pr[A_{1}] = 1$ $Pr[A_{2}|A_{1}] = 1 - \frac{1}{n}$ $Pr[A_{3}|A_{1}, A_{2}] = 1 - \frac{2}{n}$ $Pr[A_{i}|A_{i-1} \cap \cdots \cap A_{1}] = (1 - \frac{i-1}{n}).$

 $A_{i} = \text{no collision when } i\text{th ball is placed in a bin.}$ $Pr[A_{1}] = 1$ $Pr[A_{2}|A_{1}] = 1 - \frac{1}{n}$ $Pr[A_{3}|A_{1}, A_{2}] = 1 - \frac{2}{n}$ $Pr[A_{i}|A_{i-1} \cap \cdots \cap A_{1}] = (1 - \frac{i-1}{n}).$ no collision = $A_{1} \cap \cdots \cap A_{m}$.

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$ $Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}$ $Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$. Product rule:

 $A_{i} = \text{no collision when } i\text{th ball is placed in a bin.}$ $Pr[A_{1}] = 1$ $Pr[A_{2}|A_{1}] = 1 - \frac{1}{n}$ $Pr[A_{3}|A_{1}, A_{2}] = 1 - \frac{2}{n}$ $Pr[A_{i}|A_{i-1} \cap \cdots \cap A_{1}] = (1 - \frac{i-1}{n}).$ no collision = $A_{1} \cap \cdots \cap A_{m}$. Product rule:

 $Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$

 A_i = no collision when *i*th ball is placed in a bin. $Pr[A_1] = 1$ $Pr[A_2|A_1] = 1 - \frac{1}{n}$ $Pr[A_3|A_1,A_2] = 1 - \frac{2}{n}$ $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1-\frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$. Product rule: $Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$ \Rightarrow *Pr*[no collision] = $\left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right)$.

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n})$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1-\frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1-\frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used
$$\ln(1-\varepsilon) \approx -\varepsilon$$
 for $|\varepsilon| \ll 1$.
(†) $1+2+\cdots+m-1 = (m-1)m/2$.

Approximation

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}$, for large enough *n*.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

 $m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$. Roughly, *Pr*[collision] $\approx 1/2$ for $m = \sqrt{n}$.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$. Roughly, *Pr*[collision] $\approx 1/2$ for $m = \sqrt{n}$. ($e^{-0.5} \approx 0.6$.)

The birthday paradox

Probability that *m* people all have different birthdays?

Probability that *m* people all have different birthdays? With n = 365, one finds

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] =

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

The birthday paradox

n	p(n)
1	0.0%
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%
70	99.9%
100	99.99997%
200	99.99999999999999999999999999998%
300	(100 – (6×10 ⁻⁸⁰))%
350	(100 – (3×10 ⁻¹²⁹))%
365	(100 – (1.45×10 ⁻¹⁵⁵))%
366	100%
367	100%

Consider a set of *m* files.

Consider a set of m files. Each file has a checksum of b bits.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for Pr[share a checksum $] \le 10^{-3}$?

```
Claim: b \ge 2.9 \ln(m) + 9.
```

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

```
Claim: b \ge 2.9 \ln(m) + 9.
```

Proof:

Let $n = 2^b$ be the number of checksums.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

```
Claim: b \ge 2.9 \ln(m) + 9.
```

Proof:

Let $n = 2^{b}$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^{2}/(2n)\}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

 $Pr[\text{no collision}] \approx 1 - 10^{-3}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[no \text{ collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

 $Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[no \text{ collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{aligned} & Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.
There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem:

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

(a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \le ne^{-\frac{m}{n}}$.

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes'

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$
$$= (1-\frac{1}{n})^m$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx exp\{-\frac{m}{n}\}.$$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = mln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.

Experiment: Choose *m* cards at random with replacement.

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

 $p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p:=\Pr[E_1\cup E_2\cdots\cup E_n]$$

How does one estimate *p*?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$\rho := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

 $\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$\rho := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p:=\Pr[E_1\cup E_2\cdots\cup E_n]$$

How does one estimate *p*? Union Bound:

$$\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Thus,

 $Pr[missing at least one card] \leq ne^{-\frac{m}{n}}.$

Thus,

 $Pr[missing at least one card] \le ne^{-\frac{m}{n}}.$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

Thus,

 $Pr[missing at least one card] \le ne^{-\frac{m}{n}}.$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$.

Thus,

 $Pr[missing at least one card] \le ne^{-\frac{m}{n}}.$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. E.g., $n = 10^2 \Rightarrow m = 530$;

Thus,

 $Pr[missing at least one card] \le ne^{-\frac{m}{n}}.$

Hence,

 $Pr[missing at least one card] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

• Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M)$.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- Product Rule:

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[miss one specific item] \approx e^{-\frac{m}{n}};$
Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$; $Pr[miss any one of the items] \leq ne^{-\frac{m}{n}}$.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-rac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact:

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-rac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact: $\ln(1-\varepsilon) \approx -\varepsilon$.