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No! We don’t know if the sample space is uniform.
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Proof:

(b) is obvious.

See next two slides for (a) and (c).
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1 ∩B]+ · · ·+Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An ∩B for n = 1, . . . ,N.
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Roll a Red and a Blue Die.

E1 = ‘Red die shows 6’;E2 = ‘Blue die shows 6’
E1 ∪E2 = ‘At least one die shows 6’

Pr [E1] =
6

36
,Pr [E2] =

6
36

,Pr [E1 ∪E2] =
11
36

.
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Conditional probability: example.
Two coin flips (fair coin). First flip is heads. Probability of two
heads?
Ω= {HH,HT ,TH,TT}; Uniform probability space.
Event A = first flip is heads: A = {HH,HT}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given A is 1/2.
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A similar example.
Two coin flips(fair coin). At least one of the flips is heads.
→ Probability of two heads?

Ω= {HH,HT ,TH,TT}; uniform.
Event A = at least one flip is heads. A = {HH,HT ,TH}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given A is 1/3.
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Red

Green

Yellow

Blue

⌦

3/10

4/10

2/10

1/10

Pr[!]

Physical experiment Probability model

Ω= {Red, Green, Yellow, Blue}

Pr [Red|Red or Green] =
3
7
=

Pr [Red∩ (Red or Green)]
Pr [Red or Green]
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Consider Ω= {1,2, . . . ,N} with Pr [n] = pn.
Let A = {2,3,4},B = {1,2,3}.

Pr [A|B] =
p2 +p3

p1 +p2 +p3
=

Pr [A∩B]

Pr [B]
.
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Pr [A]

A BA B
In A!
In B?

Must be in A∩B.
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Yet more fun with conditional probability.
Toss a red and a blue die, sum is 7,
what is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

6 ; versus Pr [B] = 1
6 .

Observing A does not change your mind about the likelihood of B.
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Emptiness..
Suppose I toss 3 balls into 3 bins.
A =“1st bin empty”; B =“2nd bin empty.” What is Pr [A|B]?

Pr [B] = Pr [{(a,b,c) | a,b,c ∈ {1,3}] = Pr [{1,3}3] = 8
27

Pr [A∩B] = Pr [(3,3,3)] = 1
27

Pr [A|B] = Pr [A∩B]
Pr [B] = (1/27)

(8/27) = 1/8; vs. Pr [A] = 8
27 .

A is less likely given B: If second bin is empty the first is more
likely to have balls in it.
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Gambler’s fallacy.

Flip a fair coin 51 times.
A = “first 50 flips are heads”
B = “the 51st is heads”
Pr [B|A] ?

A = {HH · · ·HT ,HH · · ·HH}
B∩A = {HH · · ·HH}
Uniform probability space.

Pr [B|A] = |B∩A|
|A| = 1

2 .

Same as Pr [B].

The likelihood of 51st heads does not depend on the previous flips.
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Product Rule

Recall the definition:

Pr [B|A] = Pr [A∩B]

Pr [A]
.

Hence,
Pr [A∩B] = Pr [A]Pr [B|A].

Consequently,

Pr [A∩B∩C] = Pr [(A∩B)∩C]

= Pr [A∩B]Pr [C|A∩B]

= Pr [A]Pr [B|A]Pr [C|A∩B].
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Product Rule

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1 ∩ · · ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩ · · ·∩An−1].

Proof: By induction.
Assume the result is true for n. (It holds for n = 2.) Then,

Pr [A1 ∩ · · ·∩An ∩An+1]

= Pr [A1 ∩ · · ·∩An]Pr [An+1|A1 ∩ · · ·∩An]

= Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩ · · ·∩An−1]Pr [An+1|A1 ∩ · · ·∩An],

so that the result holds for n+1.
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Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

� Lung cancer increases the probability of smoking by 17%.
� Lung cancer causes smoking. Really?
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Causality vs. Correlation
Events A and B are positively correlated if

Pr [A∩B]> Pr [A]Pr [B].

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A
causes B or that B causes A.

Other examples:

� Tesla owners are more likely to be rich. That does not
mean that poor people should buy a Tesla to get rich.

� People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will
improve your career.

� Rabbits eat more carrots and do not wear glasses. Are
carrots good for eyesight?
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Proving Causality

Proving causality is generally difficult. One has to eliminate
external causes of correlation and be able to test the
cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

� A and B may be positively correlated because they have a
common cause. (E.g., being a rabbit.)

� If B precedes A, then B is more likely to be the cause.
(E.g., smoking.) However, they could have a common
cause that induces B before A. (E.g., smart, CS70, Tesla.)



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1 ∩B]+ · · ·+Pr [AN ∩B].



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1 ∩B]+ · · ·+Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An ∩B for n = 1, . . . ,N.



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1 ∩B]+ · · ·+Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An ∩B for n = 1, . . . ,N.
Thus,

Pr [B] = Pr [A1]Pr [B|A1]+ · · ·+Pr [AN ]Pr [B|AN ].



Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Pr [B] = Pr [A1]Pr [B|A1]+ · · ·+Pr [AN ]Pr [B|AN ].



Independence

Definition: Two events A and B are independent if



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

� When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

� When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are independent;



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

� When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are independent;

� When throwing 3 balls into 3 bins, A = bin 1 is empty and
B = bin 2 is empty are



Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

� When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

� When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

� When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are independent;

� When throwing 3 balls into 3 bins, A = bin 1 is empty and
B = bin 2 is empty are not independent;



Independence and conditional probability

Fact: Two events A and B are independent if and only if



Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].



Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed:



Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that



Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
= Pr [A]



Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
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We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]
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What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B]+Pr [Ā∩B] = Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]
= (1/2)(1/2)+(1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)
(1/2)(1/2)+(1/2)0.6

≈ 0.45.
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A picture:

Imagine 100 situations, among which
m := 100(1/2)(1/2) are such that A and B occur and
n := 100(1/2)(0.6) are such that Ā and B occur.

Thus, among the m+n situations where B occurred, there are
m where A occurred.

Hence,

Pr [A|B] =
m

m+n
=

(1/2)(1/2)
(1/2)(1/2)+(1/2)0.6

.
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8 ×1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.42

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information
changes our opinions.



Thomas Bayes

Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.
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Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

� Pr [A] = 0.0016, (.16 % of the male population is affected.)
� Pr [B|A] = 0.80 (80% chance of positive test with disease.)
� Pr [B|A] = 0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???



Bayes Rule.



Bayes Rule.

Using Bayes’ rule, we find



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10
= .013.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test. !!!!



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test. !!!!
!!!!



Monty Hall.
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Key Ideas:

� Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

� Independence: Pr [A∩B] = Pr [A]Pr [B].
� Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

� All these are possible:
Pr [A|B]< Pr [A];Pr [A|B]> Pr [A];Pr [A|B] = Pr [A].


