CS70: Alex Psomas: Lecture 13.

Modeling Uncertainty: Probability Space

CS70: Alex Psomas: Lecture 13.

Modeling Uncertainty: Probability Space

- 1. Key Points
- 2. Random Experiments
- Probability Space
- 4. Events

Uncertainty does not mean "nothing is known"

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.
 - Catch Pokemon.

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.
 - Catch Pokemon.
- Probability

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.
 - Catch Pokemon.
- Probability
 - Models knowledge about uncertainty

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.
 - Catch Pokemon.
- Probability
 - Models knowledge about uncertainty
 - Discovers best way to use that knowledge in making decisions

The Magic of Probability Uncertainty:

Uncertainty: vague,

Uncertainty: vague, fuzzy,

Uncertainty: vague, fuzzy, confusing,

Uncertainty: vague, fuzzy, confusing, scary,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability:

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability,

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability, i.e., enable you to think clearly about uncertainty.

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability, i.e., enable you to think clearly about uncertainty.

Your cost:

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

A cool trick

Random Experiment: Flip one Fair Coin

Flip a fair coin:

Flip a fair coin: (One flips or tosses a coin)

Flip a fair coin: (One flips or tosses a coin)

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes:

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H)

Flip a fair coin: (One flips or tosses a coin)

▶ Possible outcomes: Heads (H) and Tails (T)

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- Likelihoods:

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- ▶ Likelihoods: *H*: 50% and *T*: 50%

What do we mean by the likelihood of tails is 50%?

What do we mean by the likelihood of tails is 50%? Two interpretations:

Single coin flip: 50% chance of 'tails'

What do we mean by the likelihood of tails is 50%? Two interpretations:

Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip

- ➤ Single coin flip: 50% chance of 'tails'

 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails'

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips
- Question:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time?

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity!

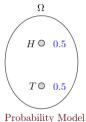
What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

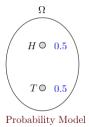
Flip a fair coin:

Physical Experiment



Flip a fair coin: model

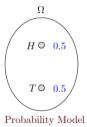
Physical Experiment



The physical experiment is complex.

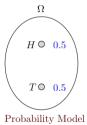
Flip a fair coin: model

Physical Experiment



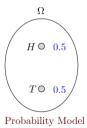
► The physical experiment is complex. (Shape, density, initial momentum and position, ...)

Physical Experiment



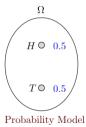
- ➤ The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:

Physical Experiment



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- ► The Probability model is simple:
 - ▶ A set Ω of outcomes: $\Omega = \{H, T\}$.

Physical Experiment



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - ▶ A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

Flip an unfair (biased, loaded) coin:

Possible outcomes:

Flip an unfair (biased, loaded) coin:

▶ Possible outcomes: Heads (H) and Tails (T)

- ▶ Possible outcomes: Heads (H) and Tails (T)
- Likelihoods:

- ▶ Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p

- ▶ Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip an unfair (biased, loaded) coin:

- ▶ Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:

Flip many times \Rightarrow Fraction 1 – p of tails

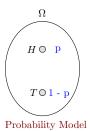
- ▶ Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- ► Frequentist Interpretation: Flip many times \Rightarrow Fraction 1 – p of tails
- Question:

- Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- ► Frequentist Interpretation: Flip many times \Rightarrow Fraction 1 – p of tails
- Question: How can one figure out p?

- Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:
 Flip many times ⇒ Fraction 1 − p of tails
- ► Question: How can one figure out p? Flip many times

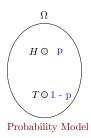
- Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:
 Flip many times ⇒ Fraction 1 − p of tails
- Question: How can one figure out p? Flip many times
- Tautology?

Physical Experiment



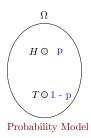
Flip an unfair (biased, loaded) coin: model

Physical Experiment



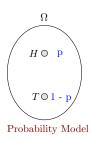
Same set of outcomes as before!

Physical Experiment

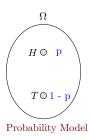


- Same set of outcomes as before!
- Different probabilities!

Physical Experiment



- Same set of outcomes as before!
- Different probabilities!
- ► The most common mistake in Probability:



- Same set of outcomes as before!
- Different probabilities!
- The most common mistake in Probability: assuming that outcomes are equally likely.

► Possible outcomes:

▶ Possible outcomes: {*HH*, *HT*, *TH*, *TT*}

▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods:

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- ► Likelihoods: 1/4 each.

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods: 1/4 each.

Flips two coins glued together side by side:

Possible outcomes:

Flips two coins glued together side by side:

▶ Possible outcomes: {*HH*, *TT*}.

- ▶ Possible outcomes: {*HH*, *TT*}.
- Likelihoods:

- ▶ Possible outcomes: {*HH*, *TT*}.
- ► Likelihoods: *HH* : 0.5, *TT* : 0.5.

Flips two coins glued together side by side:

► Possible outcomes: {*HH*, *TT*}.

Likelihoods: *HH* : 0.5, *TT* : 0.5.

Note: Coins are glued so that they show the same face.

Flips two coins glued together side by side:

Possible outcomes:

Flips two coins glued together side by side:

► Possible outcomes: {*HT*, *TH*}.

- ► Possible outcomes: {*HT*, *TH*}.
- Likelihoods:

- ► Possible outcomes: {*HT*, *TH*}.
- ► Likelihoods: *HT* : 0.5, *TH* : 0.5.

- ▶ Possible outcomes: {*HT*, *TH*}.
- Likelihoods: *HT* : 0.5, *TH* : 0.5.
- ▶ Note: Coins are glued so that they show different faces.

Flips two coins attached by a spring:

Possible outcomes:

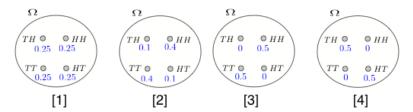
Flips two coins attached by a spring:

▶ Possible outcomes: {HH, HT, TH, TT}.

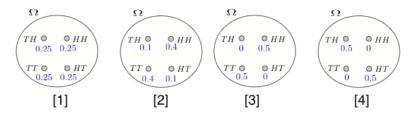
- ▶ Possible outcomes: {HH, HT, TH, TT}.
- Likelihoods:

- ▶ Possible outcomes: {HH, HT, TH, TT}.
- Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.

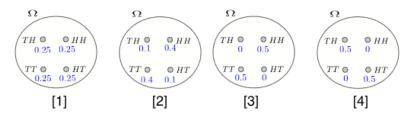
- ▶ Possible outcomes: {HH, HT, TH, TT}.
- Likelihoods: HH: 0.4, HT: 0.1, TH: 0.1, TT: 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.



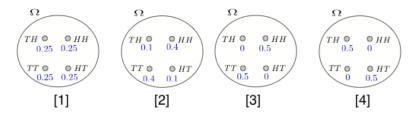
Here is a way to summarize the four random experiments:



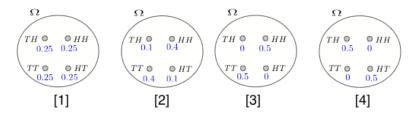
Ω is the set of possible outcomes;



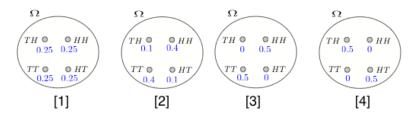
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);



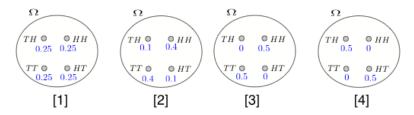
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;



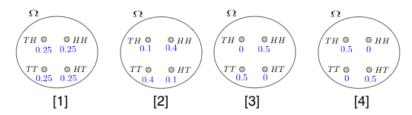
- \triangleright Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins:



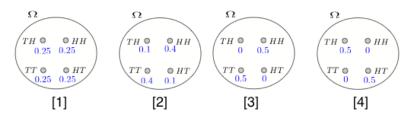
- \triangleright Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- ► Fair coins: [1];



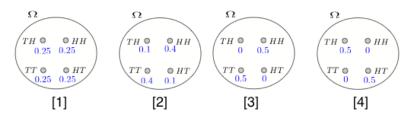
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins:



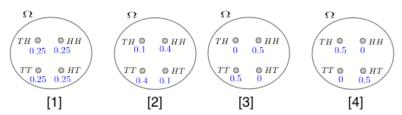
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- ► Fair coins: [1]; Glued coins: [3],[4];



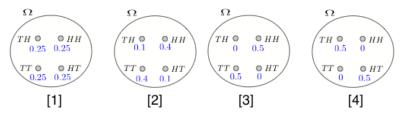
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4]; Spring-attached coins:



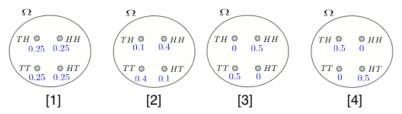
- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- ▶ The probabilities are \geq 0 and add up to 1;
- ► Fair coins: [1]; Glued coins: [3],[4]; Spring-attached coins: [2];



Here is a way to summarize the four random experiments:



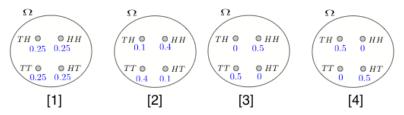
Here is a way to summarize the four random experiments:



Important remarks:

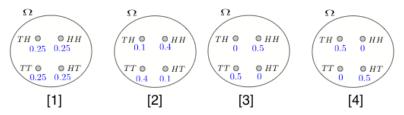
► Each outcome describes the two coins.

Here is a way to summarize the four random experiments:



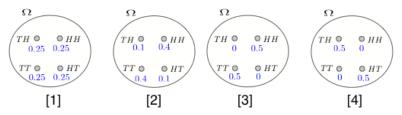
- Each outcome describes the two coins.
- ► E.g., HT is one outcome of the experiment.

Here is a way to summarize the four random experiments:



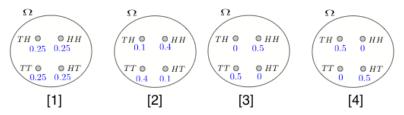
- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.

Here is a way to summarize the four random experiments:



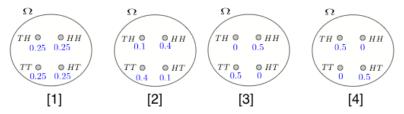
- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- This viewpoint misses the relationship between the two flips.

Here is a way to summarize the four random experiments:



- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- This viewpoint misses the relationship between the two flips.
- ▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.

Here is a way to summarize the four random experiments:



- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- This viewpoint misses the relationship between the two flips.
- ▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Flip a fair coin n times (some $n \ge 1$):

Possible outcomes:

Flip a fair coin n times (some $n \ge 1$):

▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$.

Flip a fair coin n times (some $n \ge 1$):

▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- ▶ Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$.

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}$.

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. \mid A^n \mid = |A|^n$.

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- Likelihoods:

Flipping *n* times

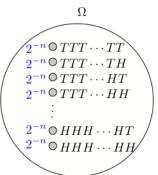
Flip a fair coin n times (some $n \ge 1$):

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- ► Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- ► Likelihoods: 1/2ⁿ each.

Flipping *n* times

Flip a fair coin n times (some $n \ge 1$):

- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- Likelihoods: 1/2ⁿ each.



Roll a balanced 6-sided die twice:

► Possible outcomes:

Roll a balanced 6-sided die twice:

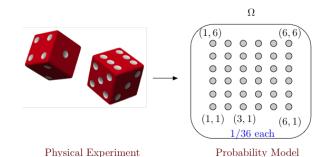
Possible outcomes:

```
\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.
```

- ► Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- Likelihoods:

- ► Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- ► Likelihoods: 1/36 for each.

- ► Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- ► Likelihoods: 1/36 for each.



1. A "random experiment":

1. A "random experiment":

(a) Flip a biased coin;

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;

1. A "random experiment":

- (a) Flip a biased coin;
- (b) Flip two fair coins;
- (c) Deal a poker hand.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\};$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| =$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\}$;
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$

- A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
 - - $|\Omega| =$

- A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
 - - $|\Omega| = {52 \choose 5}.$

- A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$
 - (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$
 - (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 - (c) $Pr\left[\begin{array}{c|c} A \spadesuit & A \diamondsuit & A \clubsuit & A \heartsuit & K \spadesuit \end{array}\right] = \cdots = 1/\binom{52}{5}$

 Ω is the sample space.

 Ω is the sample space. $\omega \in \Omega$ is a sample point.

 Ω is the sample space. $\omega \in \Omega$ is a sample point. (Also called an outcome.)

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

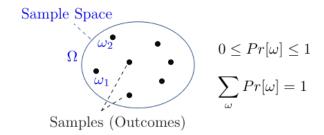
▶ $0 \le Pr[\omega] \le 1$;

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

- ▶ $0 \le Pr[\omega] \le 1$;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1.$

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

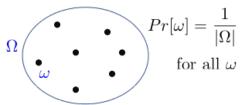
- ▶ $0 \le Pr[\omega] \le 1$;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1.$



In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

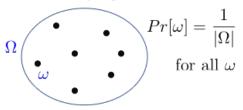
In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space



In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

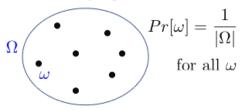


Examples:

Flipping two fair coins, dealing a poker hand are uniform probability spaces.

In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

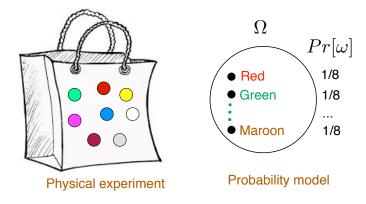


Examples:

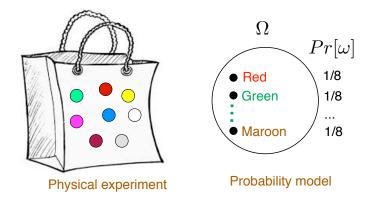
- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- ▶ Flipping a biased coin is not a uniform probability space.

Simplest physical model of a uniform probability space:

Simplest physical model of a uniform probability space:

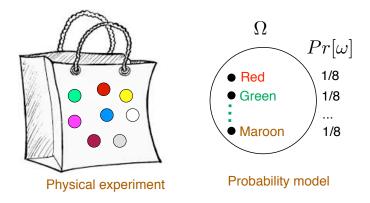


Simplest physical model of a uniform probability space:



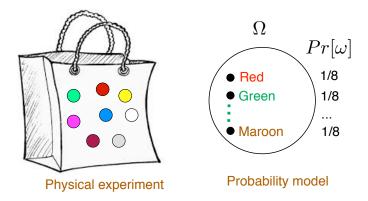
A bag of identical balls, except for their color (or a label).

Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

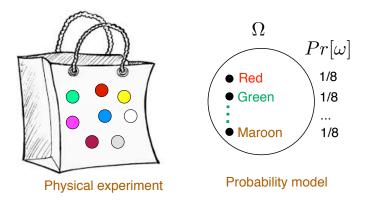
Simplest physical model of a uniform probability space:



A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

 $\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$

Simplest physical model of a uniform probability space:

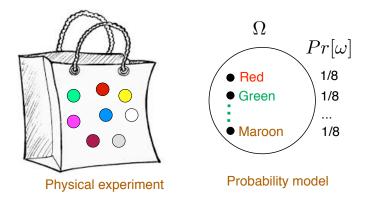


A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

 $\Omega = \{ white, red, yellow, grey, purple, blue, maroon, green \}$

$$Pr[blue] =$$

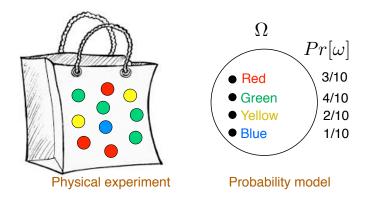
Simplest physical model of a uniform probability space:



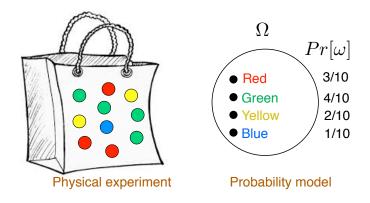
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$$

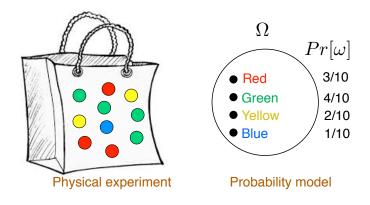
$$Pr[\text{blue}] = \frac{1}{8}.$$



Simplest physical model of a non-uniform probability space:

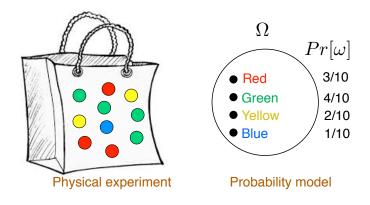


 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$



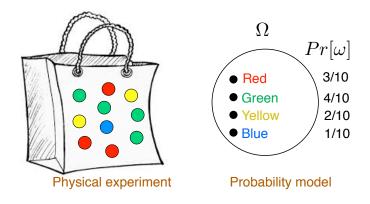
$$\Omega = \{ {\sf Red, Green, Yellow, Blue} \}$$

$$Pr[{\sf Red}] =$$



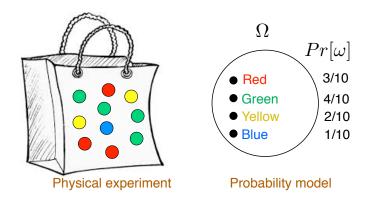
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10},$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

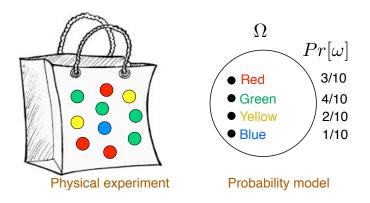
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] =$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

Simplest physical model of a non-uniform probability space:



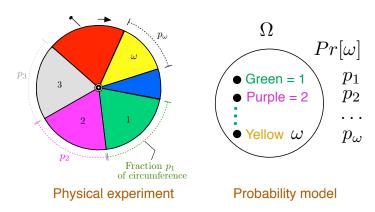
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

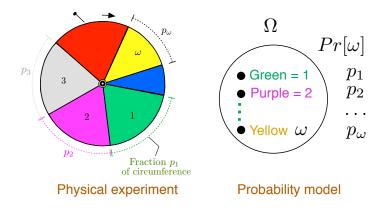
Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Physical model of a general non-uniform probability space:

Physical model of a general non-uniform probability space:

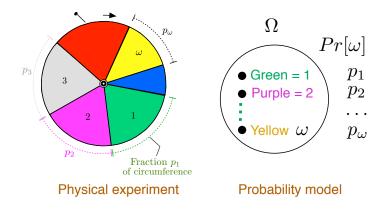


Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

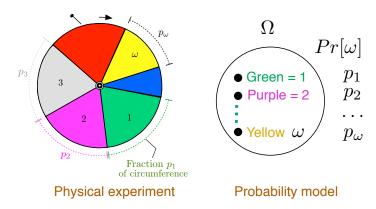
Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\},\$$

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\}, Pr[\omega] = p_{\omega}.$$

► The random experiment selects one and only one outcome in Ω .

- ► The random experiment selects one and only one outcome in Ω .
- ► For instance, when we flip a fair coin twice

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice
 - Ω = {HH, TH, HT, TT}
 - ▶ The experiment selects *one* of the elements of Ω .

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $ightharpoonup \Omega = \{HH, TH, HT, TT\}$
 - ► The experiment selects *one* of the elements of Ω.
- In this case, its would be wrong to think that Ω = {H, T} and that the experiment selects two outcomes.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $ightharpoonup \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- In this case, its would be wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why?

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice

 - The experiment selects *one* of the elements of Ω.
- ▶ In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $ightharpoonup \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\triangleright \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- ▶ In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each.

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- ▶ In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by 'picking two outcomes.'

Events

Next idea: an event!

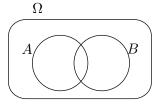


Figure: Two events

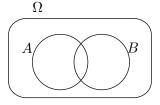


Figure: Two events

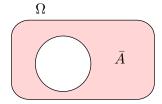
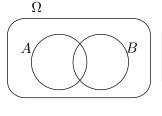


Figure : Complement (not)



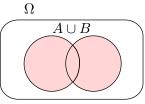


Figure : Two events

Figure : Union (or)

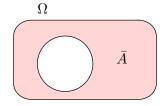
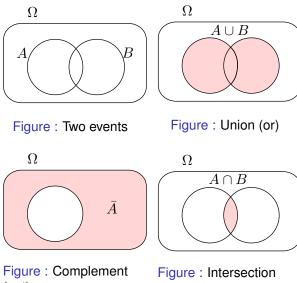
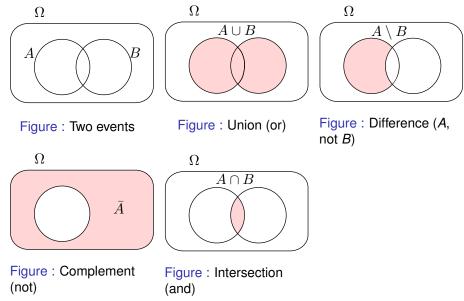


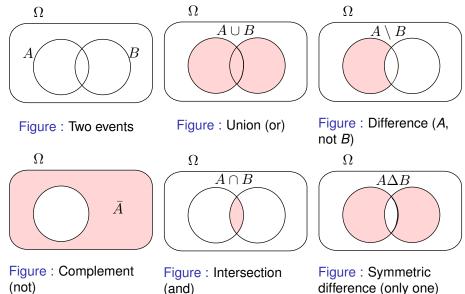
Figure : Complement (not)

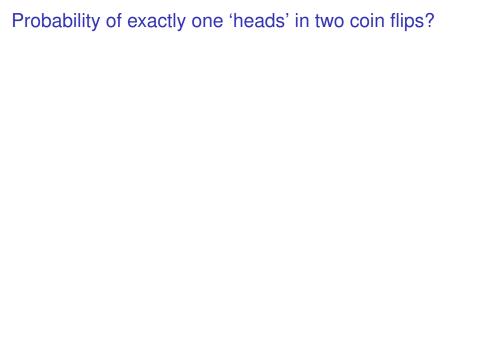


(not)

(and)







Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Definition:

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Definition:

▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Definition:

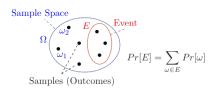
- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition!

Definition:

- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

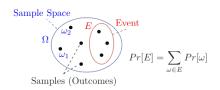


Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

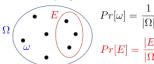
This leads to a definition!

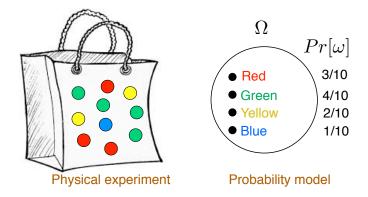
Definition:

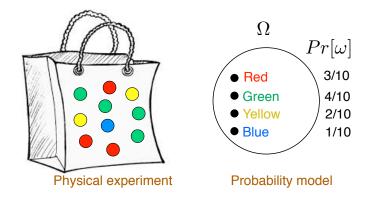
- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.



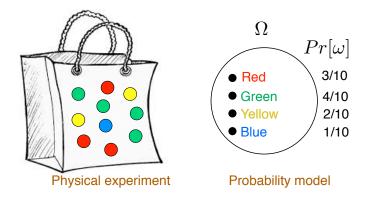
Uniform Probability Space





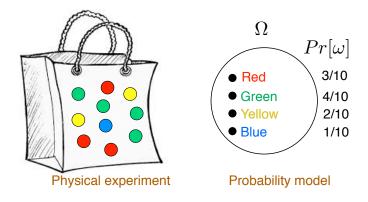


 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$



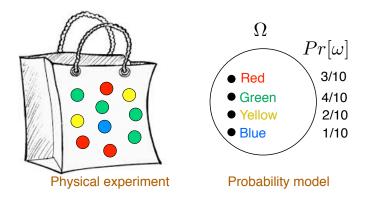
$$\Omega = \{ \mathsf{Red}, \, \mathsf{Green}, \, \mathsf{Yellow}, \, \mathsf{Blue} \}$$

$$Pr[\mathsf{Red}] =$$



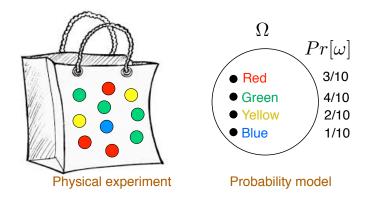
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10},$$



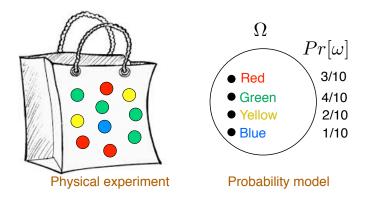
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] =$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

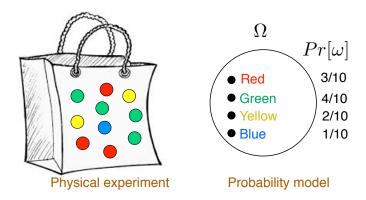
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

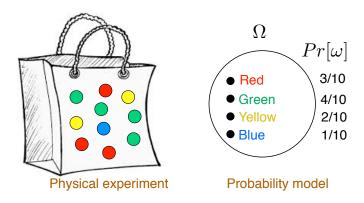
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\}$$



$$\begin{split} &\Omega = \{\text{Red, Green, Yellow, Blue}\} \\ &\textit{Pr}[\text{Red}] = \frac{3}{10}, \textit{Pr}[\text{Green}] = \frac{4}{10}, \text{ etc.} \end{split}$$

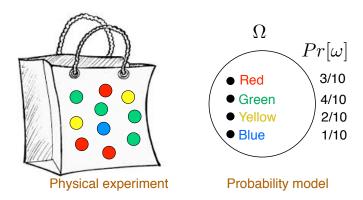
$$E = \{Red, Green\} \Rightarrow Pr[E] =$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

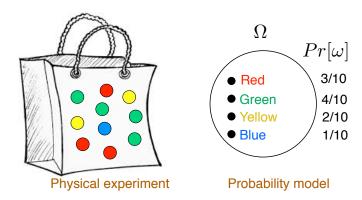
$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} =$$



$$\begin{split} \Omega &= \{ \text{Red, Green, Yellow, Blue} \} \\ \textit{Pr}[\text{Red}] &= \frac{3}{10}, \textit{Pr}[\text{Green}] = \frac{4}{10}, \text{ etc.} \end{split}$$

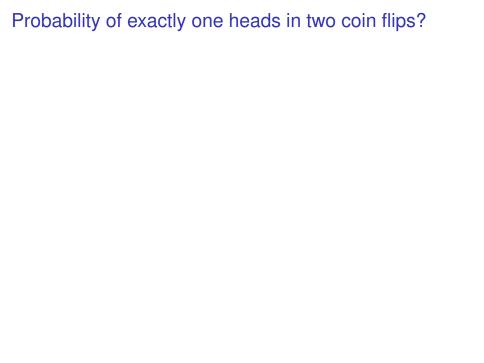
$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = \frac{$$



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[Red] + Pr[Green].$$



Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

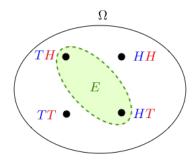
Uniform probability space:

 $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$

Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

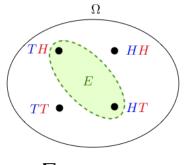
 $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$



Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

Uniform probability space:

$$Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$$

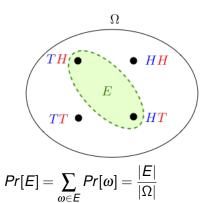


$$Pr[E] = \sum_{\omega \in E} Pr[\omega]$$

Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

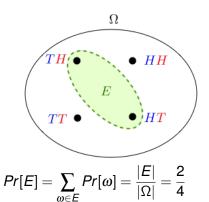
$$Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$$



Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

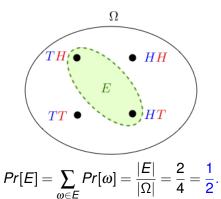
 $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$



Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

 $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$



20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

20 coin tosses

Sample space: $\Omega = \text{set}$ of 20 fair coin tosses.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20};$$

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses.}$

$$\Omega = \{T, \dot{H}\}^{20} \equiv \{0,1\}^{20}; \ |\Omega| = 2^{20}.$$

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses.}$

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

20 coin tosses

Sample space: $\Omega =$ set of 20 fair coin tosses.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

20 coin tosses

Sample space: $\Omega =$ set of 20 fair coin tosses.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer:

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)?$

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

► What is more likely?

 (E_1) Twenty Hs out of twenty, or

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

 (E_1) Twenty Hs out of twenty, or (E_2) Ten Hs out of twenty?

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?
 - \bullet $\omega_1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or$
 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

 (E_1) Twenty Hs out of twenty, or (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why?

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?

 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

$$|E_2| =$$

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?
 - \bullet $\omega_1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or$
 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

$$|\textit{E}_2| = \binom{20}{10} =$$

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?
 - \bullet $\omega_1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or$
 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

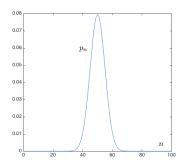
Answer: Ten Hs out of twenty.

$$|E_2| = {20 \choose 10} = 184,756.$$

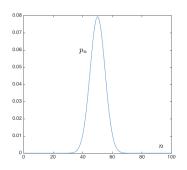
 $\Omega = \{H, T\}^{100};$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

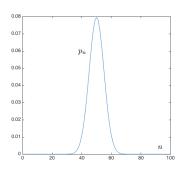


$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



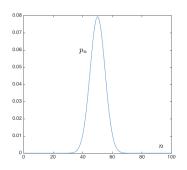
Event $E_n = 'n$ heads';

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



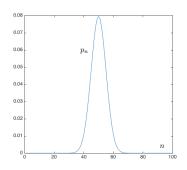
Event E_n = 'n heads'; $|E_n|$ =

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event E_n = 'n heads'; $|E_n| = \binom{100}{n}$

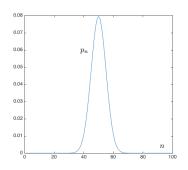
$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] =$$

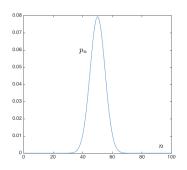
$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event
$$E_n = n$$
 heads'; $|E_n| = \binom{100}{n}$

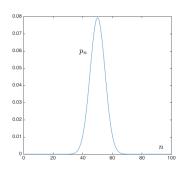
$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} =$$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$
 $p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

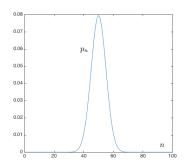


Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

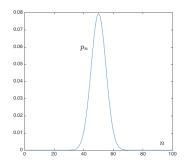


Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$
 $p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$

Observe:

Concentration around mean:

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

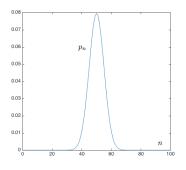


Event
$$E_n$$
 = '*n* heads'; $|E_n| = \binom{100}{n}$
 $p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$

Observe:

Concentration around mean: Law of Large Numbers;

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



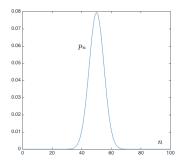
Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape:

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



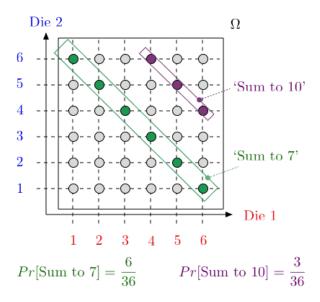
Event
$$E_n$$
 = ' n heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.



Sample space: $\Omega = \text{set of } 100 \text{ coin tosses}$

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}$.

Sample space: $\Omega = \text{set of 100 coin tosses} = \{H, T\}^{100}$. $|\Omega| = 2 \times 2 \times \cdots \times 2$

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Choose 50 positions out of 100 to be heads.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|*E*|?

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}.$$

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}$$
.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2}$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} =$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} =$$

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

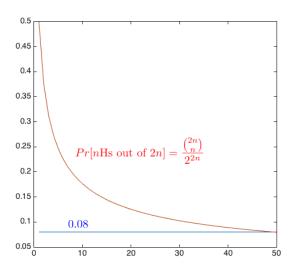
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{n}}$$

$$n! pprox \sqrt{2\pi n} \left(rac{n}{e}
ight)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$



Lecture 13: Summary

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- 4. Events: subsets of Ω .

$$Pr[E] = \sum_{\omega \in E} Pr[\omega].$$