CS70: Alex Psomas: Lecture 13.

Modeling Uncertainty: Probability Space

- 1. Key Points
- 2. Random Experiments
- Probability Space
- 4. Events

Key Points

- Uncertainty does not mean "nothing is known"
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance.
 - Design randomized algorithms.
 - Catch Pokemon.
- Probability
 - Models knowledge about uncertainty
 - Discovers best way to use that knowledge in making decisions

The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability: A precise, unambiguous, simple way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity

Our mission: help you discover the magic of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

A cool trick

Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes: Heads (H) and Tails (T) (One flip yields either 'heads' or 'tails'.)
- ▶ Likelihoods: *H*: 50% and *T*: 50%

Random Experiment: Flip one Fair Coin Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

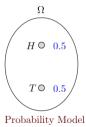
Two interpretations:

- Single coin flip: 50% chance of 'tails'
 Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' Makes sense for many flips
- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!

Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment



- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - ▶ A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.

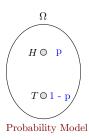
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- ▶ Likelihoods: $H: p \in (0,1)$ and T: 1-p
- Frequentist Interpretation:
 Flip many times ⇒ Fraction 1 − p of tails
- Question: How can one figure out p? Flip many times
- Tautology?

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model



- Same set of outcomes as before!
- Different probabilities!
- The most common mistake in Probability: assuming that outcomes are equally likely.

Flip Two Fair Coins

- ▶ Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- ▶ Note: $A \times B := \{(a,b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- ► Likelihoods: 1/4 each.

Flip Glued Coins

Flips two coins glued together side by side:

► Possible outcomes: {*HH*, *TT*}.

Likelihoods: *HH* : 0.5, *TT* : 0.5.

Note: Coins are glued so that they show the same face.

Flip Glued Coins

Flips two coins glued together side by side:

- ▶ Possible outcomes: {*HT*, *TH*}.
- Likelihoods: *HT* : 0.5, *TH* : 0.5.
- Note: Coins are glued so that they show different faces.

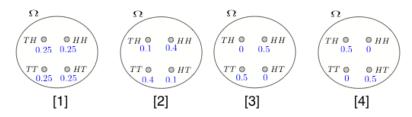
Flip two Attached Coins

Flips two coins attached by a spring:

- ▶ Possible outcomes: {HH, HT, TH, TT}.
- ▶ Likelihoods: HH: 0.4, HT: 0.1, TH: 0.1, TT: 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.

Flipping Two Coins

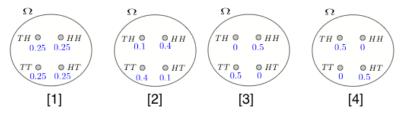
Here is a way to summarize the four random experiments:



- \triangleright Ω is the set of *possible* outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3],[4]; Spring-attached coins: [2];

Flipping Two Coins

Here is a way to summarize the four random experiments:



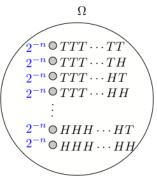
Important remarks:

- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- ▶ It is wrong to think that the outcomes are {*H*, *T*} and that one picks twice from that set.
- This viewpoint misses the relationship between the two flips.
- ▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.
- Ω and the probabilities specify the random experiment.

Flipping *n* times

Flip a fair coin n times (some $n \ge 1$):

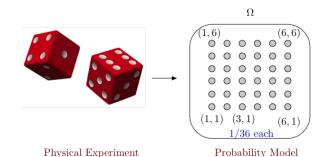
- ▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \dots, HH \cdots H\} = \{H, T\}^n$. $A^n := \{(a_1, \dots, a_n) \mid a_1 \in A, \dots, a_n \in A\}. |A^n| = |A|^n$.
- Likelihoods: 1/2ⁿ each.



Roll two Dice

Roll a balanced 6-sided die twice:

- ► Possible outcomes: $\{1,2,3,4,5,6\}^2 = \{(a,b) \mid 1 \le a,b \le 6\}.$
- ► Likelihoods: 1/36 for each.



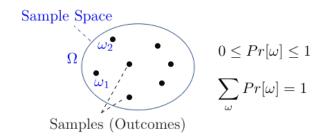
Probability Space.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .
 - (a) $\Omega = \{H, T\};$
 - (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4;$
- 3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0,1]$.
 - (a) Pr[H] = p, Pr[T] = 1 p for some $p \in [0, 1]$
 - (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 - (c) $Pr\left[\begin{array}{c|c} A \spadesuit & A \diamondsuit & A \clubsuit & A \heartsuit & K \spadesuit \end{array}\right] = \cdots = 1/\binom{52}{5}$

Probability Space: formalism.

 Ω is the **sample space.** $\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.) Sample point ω has a probability $Pr[\omega]$ where

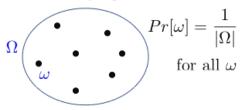
- ▶ $0 \le Pr[\omega] \le 1$;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1.$



Probability Space: Formalism.

In a **uniform probability space** each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Uniform Probability Space

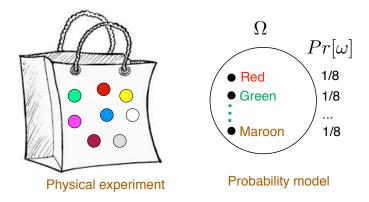


Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- ▶ Flipping a biased coin is not a uniform probability space.

Probability Space: Formalism

Simplest physical model of a uniform probability space:



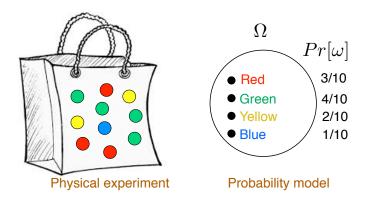
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

$$\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \}$$

$$Pr[\text{blue}] = \frac{1}{8}.$$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:



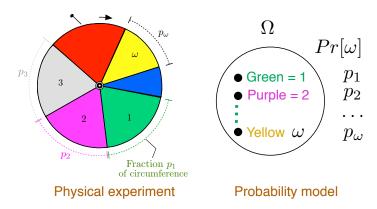
$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Probability Space: Formalism

Physical model of a general non-uniform probability space:



The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \dots, N\}, Pr[\omega] = p_{\omega}.$$

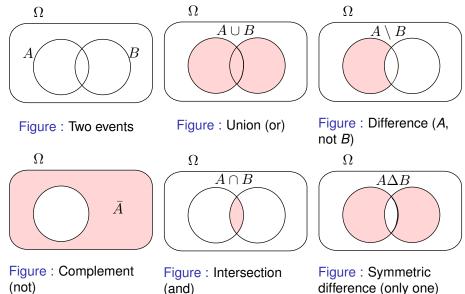
An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $ightharpoonup \Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- In this case, its would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ▶ For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

Events

Next idea: an event!

Set notation review



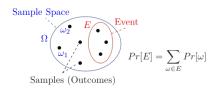
Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

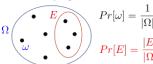
This leads to a definition!

Definition:

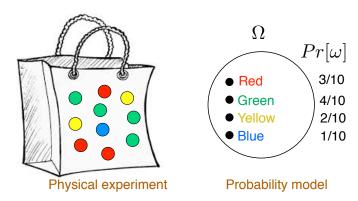
- ▶ An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- ▶ The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.



Uniform Probability Space



Event: Example



$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{ etc.}$$

$$E = \{Red, Green\} \Rightarrow Pr[E] = \frac{3+4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[Red] + Pr[Green].$$

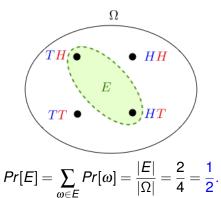
Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}.$

Uniform probability space:

$$Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$$

Event, E, "exactly one heads": $\{TH, HT\}$.



Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses}$.

$$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \ |\Omega| = 2^{20}.$$

- What is more likely?
 - \bullet $\omega_1 := (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), or$
 - $\omega_2 := (1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E_1) Twenty Hs out of twenty, or
 - (E_2) Ten Hs out of twenty?

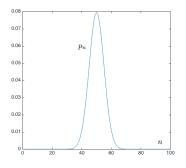
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$$|E_2| = {20 \choose 10} = 184,756.$$

Probability of *n* heads in 100 coin tosses.

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$



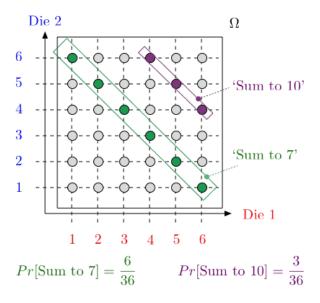
Event
$$E_n = n$$
 heads'; $|E_n| = \binom{100}{n}$

$$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.



Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega = \text{set of } 100 \text{ coin tosses} = \{H, T\}^{100}.$ $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}.$

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|?

Choose 50 positions out of 100 to be heads.

$$|E| = \binom{100}{50}$$
.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$

Calculation.

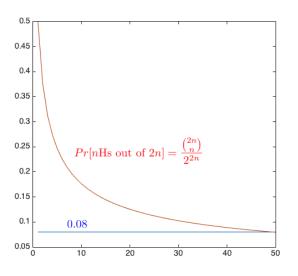
Stirling formula (for large n):

$$n! pprox \sqrt{2\pi n} \left(rac{n}{e}
ight)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n}(2n/e)^{2n}}{[\sqrt{2\pi n}(n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.



Lecture 13: Summary

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- 4. Events: subsets of Ω .

$$Pr[E] = \sum_{\omega \in E} Pr[\omega].$$