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Review for Midterm.
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Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.



First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
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...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.
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Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.
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Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Very connected.
Lots of edges: n(n−1)/2.
Wow.
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Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Property:
Can remove a single node and break into components of size at

most |V |/2.
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Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in exactly one bit position.}
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Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000
Correct bits in string, moves along path in hypercube!

Good communication network!
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There is a cut with all the edges.

Cycles have length 4 or more edges.
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Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?

Yes for matching.
No, for roommates problem.
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Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.
rogue couple (M,W)
=⇒ M proposed to W
=⇒ W ended up with someone she liked better than M.

Not rogue couple!
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Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Thm: woman pessimal.

Man optimal =⇒ Woman pessimal.
Woman optimal =⇒ Man pessimal.
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And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization: Well, assume there is a list. Can construct
a diagonal element x . x is not in the list! Contradiction.



HALTING



HALTING

The HALT problem:



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why?



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares?



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!

Like: Will this program P even print ”Hello World”?



HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!

Like: Will this program P even print ”Hello World”?
Or ”Is there an input for this program P that will give an attacker

admin access?



Counting!

Sample k items out of n.

With Replacement Without Replacement

Order matters nk n!
(n−k)!

Order doesn’t matter
�n+k−1

n−1

� �n
k

�
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Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars? One fewer than the hats. So 9

||� |��|��|||��� ||
Didn’t wear hats 1 and 2. Wore hat 3 for 1 day, hat 4 for 2 days, hat 5
days. Didn’t wear hats 6 and 7. Hat 8 for 3 days. Didn’t wear hats 9
and 10.
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Add them up. (Sum rule)
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Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.
Not so much calculation.

Remember that a problem from hw and/or discussions is in the
midterm! (identical or almost identical)

So study those!
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FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

Understanding a complex proof is a useful skill.

Also, big proofs are usually a bunch of little proofs put together.
And every proof is a new trick. And we like tricks!
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Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!!!!!


