
Today

Review for Midterm.

First there was logic...

A statement is a true or false.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x).

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x).

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.

(∀n ∈ N),n2 ≥ n:

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.

(∀n ∈ N),n2 ≥ n: Any free variables?

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.

(∀n ∈ N),n2 ≥ n: Any free variables? No.

First there was logic...

A statement is a true or false.
Don’t worry about Gödel.
Statements?

3 = 4−1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: x = 3 Given a value for x , becomes a statement.

Predicate?
n > 3 ? Predicate: P(n)!
x = y? Predicate: P(x ,y)!
x +y? No. An expression, not a statement.

Quantifiers:
(∀x) P(x). For every x , P(x) is true.
(∃x) P(x). There exists an x , where P(x) is true.

(∀n ∈ N),n2 ≥ n: Any free variables? No. So it’s a statement.
(∀x ∈ R)(∃y ∈ R)y > x .

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1:

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true.

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2:

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true.

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true. No matter what P and Q are!

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true. No matter what P and Q are!

Or manipulate the formulas.

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true. No matter what P and Q are!

Or manipulate the formulas.
If you think it’s not true:

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true. No matter what P and Q are!

Or manipulate the formulas.
If you think it’s not true:

Find an example of P(x) and Q(x)

Connecting Statements

A∧B, A∨B, ¬A, A =⇒ B.

Propositional Expressions and Logical Equivalence

(A =⇒ B)≡ (¬A∨B)
¬(A∨B)≡ (¬A∧¬B)

Proofs: truth table or manipulation of known formulas.

(∀x ∈ R)(P(x)∧Q(x))≡ (∀x ∈ R)P(x)∧ (∀x ∈ R)Q(x)
If you think it’s true:

Step 1: Show that when the thing on the left is true, the thing on
the right is true. No matter what P and Q are!

Step 2: Show that when the thing on the right is true, the thing on
the left is true. No matter what P and Q are!

Or manipulate the formulas.
If you think it’s not true:

Find an example of P(x) and Q(x) such that one of the above
steps fails.

...and then proofs...

Direct: P =⇒ Q

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even?

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication!

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:
Example: rational representation of

√
2

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:
Example: rational representation of

√
2 does not exist.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:
Example: rational representation of

√
2 does not exist.

Example: finite set of primes

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:
Example: rational representation of

√
2 does not exist.

Example: finite set of primes does not exist.

...and then proofs...

Direct: P =⇒ Q
Example: a is even =⇒ a2 is even.

Approach: What is even? a = 2k
a2 = 4k2 = 2(2k2)
Integers closed under multiplication! So 2k2 is even.

a2 is even.

Contrapositive: P =⇒ Q or ¬Q =⇒ ¬P.
Example: a2 is odd =⇒ a is odd.
Contrapositive: a is even =⇒ a2 is even.

Contradiction: P
¬P =⇒ false

Useful to prove something does not exist:
Example: rational representation of

√
2 does not exist.

Example: finite set of primes does not exist.
Example: rogue couple does not exist.

...jumping forward..

Contradiction in induction:

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:
First day where no woman improves.

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:
First day where no woman improves. Does not exist.

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:
First day where no woman improves. Does not exist.

Contradiction in Countability:

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:
First day where no woman improves. Does not exist.

Contradiction in Countability:
Assume there is a list with all the real numbers.

...jumping forward..

Contradiction in induction:
Find a place where induction step doesn’t hold.
Something something Well ordering principle...

Contradiction in Stable Marriage:
First day where no woman improves. Does not exist.

Contradiction in Countability:
Assume there is a list with all the real numbers. Impossible.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.

Induction Step: Prove P(n+1)

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.

Induction Step: Prove P(n+1)

32n+2 −1 =

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)
= 9(8d +1)−1

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)
= 9(8d +1)−1
= 72d +8

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)
= 9(8d +1)−1
= 72d +8
= 8(9d +1)

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)
= 9(8d +1)−1
= 72d +8
= 8(9d +1)

Divisible by 8.

...and then induction...

P(0)∧ ((∀n)(P(n) =⇒ P(n+1) ≡ (∀n ∈ N) P(n).

Thm: For all n ≥ 1, 8|32n −1.

Induction on n.

Base: 8|32 −1.

Induction Hypothesis: Assume P(n): True for some n.
(32n −1 = 8d)

Induction Step: Prove P(n+1)

32n+2 −1 = 9(32n)−1 (by induction hypothesis)
= 9(8d +1)−1
= 72d +8
= 8(9d +1)

Divisible by 8.

...Graphs...

G = (V ,E)

...Graphs...

G = (V ,E)
V - set of vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.

...Graphs...

G = (V ,E)
V - set of vertices.
E ⊆ V ×V - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is 2|E |.
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph
Recurse on connected components.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph
Recurse on connected components.
Put together.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph
Recurse on connected components.
Put together.

Property: walk visits every component.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph
Recurse on connected components.
Put together.

Property: walk visits every component.
Proof Idea: Original graph connected.

Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree
has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Take a walk using each edge at most once.
Property: return to starting point.

Why? Even degree. Always have an option

Remove the walk from the graph
Recurse on connected components.
Put together.

Property: walk visits every component.
Proof Idea: Original graph connected.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.

Graph Coloring.

Given G = (V ,E), a coloring of a G assigns colors to vertices V
where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Planar graphs and maps.

Planar graph coloring ≡ map coloring.

Planar graphs and maps.

Planar graph coloring ≡ map coloring.

Four color theorem is about planar graphs!

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula:

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: e ≤ 3v −6 for any planar graph.

From Euler’s Formula: v + f = e+2.
3f ≤ 2e

Total degree: 2e
Average degree: ≤ 2e

v ≤ 2(3v−6)
v ≤ 6− 12

v .

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...

and only five colors are used.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Proof:

Five color theorem

Theorem: Every planar graph can be colored with five colors.

Proof: Not Today!

Four Color Theorem

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof:

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!

Graph Types: Complete Graph.

Graph Types: Complete Graph.

Kn, |V |= n

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex?

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Very connected.

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Very connected.
Lots of edges:

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Very connected.
Lots of edges: n(n−1)/2.

Graph Types: Complete Graph.

Kn, |V |= n

every edge present.
degree of vertex? |V |−1.

Very connected.
Lots of edges: n(n−1)/2.
Wow.

Trees.

Definitions:

Trees.

Definitions:

A connected graph without a cycle.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Property:

Trees.

Definitions:

A connected graph without a cycle.
A connected graph with |V |−1 edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Property:
Can remove a single node and break into components of size at

most |V |/2.

Hypercube

Hypercubes.

Hypercube

Hypercubes. Really connected.

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what?

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1.

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh...

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

G = (V ,E)

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in exactly one bit position.}

Hypercube

Hypercubes. Really connected. O(|V | log |V |) edges!
Wait what? I thought it was n2n−1. Oh... 2n = |V |...
Also represents bit-strings nicely.

G = (V ,E)
|V |= {0,1}n,
|E |= {(x ,y)|x and y differ in exactly one bit position.}

0 1

00 10

01 11

000
010

001 011

100
110

101 111

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of
bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube)
which is a n−1-dimensional hypercube with nodes labelled 0x (1x)
with the additional edges (0x ,1x).

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI:

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000
Correct bits in string, moves along path in hypercube!

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000
Correct bits in string, moves along path in hypercube!

Hypercube:properties

Dense cuts: Cutting off k nodes needs ≥ k edges.

FYI: Also cuts represent boolean functions. One side of the cut
takes value 0. The other side takes value 1.

Nice Paths between nodes.
Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000
Correct bits in string, moves along path in hypercube!

Good communication network!

Bipartite graphs

1

2

3

4

5

6

7

8

9

U

V

Bipartite graphs

1

2

3

4

5

6

7

8

9

U

V

There is a cut with all the edges.

Bipartite graphs

1

2

3

4

5

6

7

8

9

U

V

There is a cut with all the edges.

Cycles have length 4 or more edges.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs?

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?

Yes for matching.

Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing/Marching.
Set of pairs (mi ,wj) containing all people exactly once.
How many pairs? n.
People in pair are partners in pairing.

Rogue Couple in a pairing.
A mj and wk who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?

Yes for matching.
No, for roommates problem.

TMA.

Traditional Marriage Algorithm:

TMA.

Traditional Marriage Algorithm:

Each Day:

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability:

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.
rogue couple (M,W)

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.
rogue couple (M,W)
=⇒ M proposed to W

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.
rogue couple (M,W)
=⇒ M proposed to W
=⇒ W ended up with someone she liked better than M.

TMA.

Traditional Marriage Algorithm:

Each Day:
Every man proposes to his favorite woman from the ones that

haven’t already rejected him.
Every woman rejects all but best man who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

Key Property: Improvement Lemma:
Every day, if man on string for woman,

=⇒ any future man on string is better. (proof by contradiction)

Stability: No rogue couple.
rogue couple (M,W)
=⇒ M proposed to W
=⇒ W ended up with someone she liked better than M.

Not rogue couple!

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing?

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Thm: woman pessimal.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Thm: woman pessimal.

Man optimal =⇒ Woman pessimal.

Optimality/Pessimal
Optimal partner if best partner in any stable pairing.

Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Proof by contradiction:
Let M be the first man to propose to someone worse than optimal

partner W .
TMA: M asked W . And then got replaced by M �!
W prefers M �.
How much doesn M � like W?
Better than his match in optimal pairing? Impossible.
Worse than his match in the optimal pairing?

Then M wasn’t the first!!

Thm: woman pessimal.

Man optimal =⇒ Woman pessimal.
Woman optimal =⇒ Man pessimal.

And then countability

And then countability

More than one infinities

And then countability

More than one infinities

Some things are countable

And then countability

More than one infinities

Some things are countable , like the natural numbers

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why?

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why?

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization:

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization: Well, assume there is a list.

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization: Well, assume there is a list. Can construct
a diagonal element x .

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization: Well, assume there is a list. Can construct
a diagonal element x . x is not in the list!

And then countability

More than one infinities

Some things are countable , like the natural numbers , or the
rationals...

Why? There is a list!!
Some things are not countable , like the reals , or the set of all
subsets of the naturals...

Why? Diagonalization: Well, assume there is a list. Can construct
a diagonal element x . x is not in the list! Contradiction.

HALTING

HALTING

The HALT problem:

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why?

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares?

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!

Like: Will this program P even print ”Hello World”?

HALTING

The HALT problem: Is there a program that can tell you if another
(generic) program halts on an input?

NO!

Why? Self reference!

Who cares? Using the same trick I can show that a bunch of
problems are undecidable!

Like: Will this program P even print ”Hello World”?
Or ”Is there an input for this program P that will give an attacker

admin access?

Counting!

Sample k items out of n.

With Replacement Without Replacement

Order matters nk n!
(n−k)!

Order doesn’t matter
�n+k−1

n−1

� �n
k

�

Stars and bars!

Stars and bars!

Confusion yesterday: 10 hats.

Stars and bars!

Confusion yesterday: 10 hats. 7 days.

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement).

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars?

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day.

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars?

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars? One fewer than the hats.

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars? One fewer than the hats. So 9

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars? One fewer than the hats. So 9

||� |��|��|||��� ||

Stars and bars!

Confusion yesterday: 10 hats. 7 days. I can wear the same hat on
different days (replacement). I don’t care which day I wore what
(order doesn’t matter).

Why is this stars and bars?

How many stars? One for each day. So 7

How many bars? One fewer than the hats. So 9

||� |��|��|||��� ||
Didn’t wear hats 1 and 2. Wore hat 3 for 1 day, hat 4 for 2 days, hat 5
days. Didn’t wear hats 6 and 7. Hat 8 for 3 days. Didn’t wear hats 9
and 10.

Combinatorial Proofs.

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left?

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right?

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1?

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

How many subsets of size k don’t have 1?

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

How many subsets of size k don’t have 1? k elements left to pick

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

How many subsets of size k don’t have 1? k elements left to pick ,
from {2, . . . ,n+1}.

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

How many subsets of size k don’t have 1? k elements left to pick ,
from {2, . . . ,n+1}.

�n
k

�

Combinatorial Proofs.

Easy ones:
�n

k

�
=
� n

n−k

�

Harder ones:
�n+1

k

�
=
�n

k

�
+
� n

k−1

�

What’s the thing on the left? Number of subsets of size k of
{1,2, . . . ,n+1}.

What’s the thing on the right? Each subset either has, or doesn’t
have 1.

How many subsets of size k have 1? k −1 elements left to pick ,
from {2, . . . ,n+1}.

� n
k−1

�

How many subsets of size k don’t have 1? k elements left to pick ,
from {2, . . . ,n+1}.

�n
k

�

Add them up. (Sum rule)

Midterm format

Time: 110 minutes.

Midterm format

Time: 110 minutes.

Some short answers.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well:

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast,

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium:

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower,

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well:

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs,

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.
Not so much calculation.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.
Not so much calculation.

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.
Not so much calculation.

Remember that a problem from hw and/or discussions is in the
midterm! (identical or almost identical)

Midterm format

Time: 110 minutes.

Some short answers.
Get at ideas that you learned.
If something is taking too long maybe there is a trick!
Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, properties.
Not so much calculation.

Remember that a problem from hw and/or discussions is in the
midterm! (identical or almost identical)

So study those!

FAQ

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

Understanding a complex proof is a useful skill.

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

Understanding a complex proof is a useful skill.

Also, big proofs are usually a bunch of little proofs put together.

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

Understanding a complex proof is a useful skill.

Also, big proofs are usually a bunch of little proofs put together.
And every proof is a new trick.

FAQ

� Will this proof from the notes that I don’t like be in the midterm?

No.

� The why should I study it?

Understanding a complex proof is a useful skill.

Also, big proofs are usually a bunch of little proofs put together.
And every proof is a new trick. And we like tricks!

Wrapup.

Wrapup.

If you sent us an email about Midterm conflicts

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!!!!

Wrapup.

If you sent us an email about Midterm conflicts
Other arrangements.
Should have received an email from us.
You should know what to do by know.

Other issues....
email us.
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!!!!!

