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Lecture 9

What’s to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?
3
8 . How did I know?

Count blue. Count total. Divide.

Today (and tomorrow): Counting!

Next week: Probability.

Make sure you understand counting if you want to understand
probability!!!



Outline: basics

1. Counting.

2. Rules of Counting.

3. Sample with/without replacement where order does/doesn’t
matter.

4. Combinatorial proofs (mostly tomorrow)
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Count?

How many outcomes possible for k coin tosses?
How many poker hands?
How many handshakes for n people?
How many 10 digit numbers?
How many 10 digit numbers without repetition?
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Using a tree.

How many 3-bit strings? (I know, I know... Calm down.... )
How many different sequences of three bits from {0,1}?
How would you make one sequence?

Pick the first digit. Pick the second digit. Pick the third digit.

000

0

001
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011

1

1

0

100

0

101

1

0

110

0

111

1

1

1

8 leaves which is 2×2×2. One leaf for each string.
8 3-bit strings!
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Using the first rule.

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2×2 · · · ×2 = 2k

How many k digit numbers (in decimal)?

10 ways for first choice, 10 ways for second choice, ...
10×10 · · · ×10 = 10k

How many n digit base m numbers?

m ways for first, m ways for second, ...
mn
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How many functions f mapping S = {s1,s2, . . .} to T = {t1, t2, . . .}?

|T | ways to choose for f (s1), |T | ways to choose for f (s2), ...

....|T ||S|

How many polynomials of degree d , when the coefficients of the
polynomial come from the set {0,1, . . . ,p−1}?

p ways to choose for first coefficient, p ways for second, ...
...pd+1
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How many 10 digit numbers? 1010.

How many 10 digit numbers without repeating a digit?

10 ways for first, 9 ways for second, 8 ways for third, ...

... 10∗9∗8 · · ·∗1 = 10! 1

How many orderings of n objects are there?
Permutations of n objects.

n ways for first, n−1 ways for second,
n−2 ways for third, ...

... n ∗ (n−1)∗ (n−2) ·∗1 = n!

1By definition: 0! = 1.
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One-to-One Functions.

How many one-to-one functions from S to S.

|S| choices for f (s1), |S|−1 choices for f (s2), ...
So total number is |S|× (|S|−1) · · ·1 = |S|!
A one-to-one function is a permutation!
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Counting sets when order doesn’t matter.

How many poker hands? (5 cards)

52×51×50×49×48 ???

Aren’t A,K ,Q,10,J of spades
and 10,J,Q,K ,A of spades the same?
Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.2

Number of orderings for a poker hand: 5!
52×51×50×49×48

5!Can write as...
52!

5!×47!
Generic: ways to choose 5 out of 52 possibilities.

2When each unordered object corresponds to an equal numbers of
ordered objects.
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Notation:
�n

k

�
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Some Practice.
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Some Practice.

How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways to choose second, 1 for last.

=⇒ 3×2×1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A

total orderings of 7 letters. 7!
total “extra counts” or orderings of three A’s? 3!

Total orderings? 7!
3!

How many orderings of MISSISSIPPI?

4 S’s, 4 I’s, 2 P’s.
11 letters total!
11! ordered objects!
4!×4!×2! ordered objects per “unordered object”

=⇒ 11!
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2! ordered elts map to it.

How do we deal with this mess?!?!



What we’ve learned so far

Sample k items out of n.

With Replacement Without Replacement

Order matters nk n!
(n−k)!

Order doesn’t matter ????
�n

k
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Short break.
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Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice(25), divide out order ???

5 dollars for Bob and 0 for Alice:
one ordered set: (B,B,B,B,B).

4 for Bob and 1 for Alice:
5 ordered sets: (A,B,B,B,B) ; (B,A,B,B,B); ...

“Sorted” way to specify, first Alice’s dollars, then Bob’s.
(B,B,B,B,B)
(A,B,B,B,B)
(A,A,B,B,B)

and so on.

. . .. . .

. . .. . . Δ ??

Second rule of counting is no good here!
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Splitting 5 dollars.

How many ways can Bob and Alice split 5 dollars?
Well, I can actually do this by bruteforcing....
0$ to Alice.
or 1$ to Alice.
or 2$ to Alice.
or 3$ to Alice.
or 4$ to Alice.
or 5$ to Alice.
How do we generalize?
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Splitting 5 dollars.

How many ways can Alice, Bob, and Eve split 5 dollars.

Alice gets 3, Bob gets 1, Eve gets 1: (A,A,A,B,E).

Separate Alice’s dollars from Bob’s and then Bob’s from Eve’s.

Five dollars are five stars: �����.

Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: �� |� |��.

Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |� |����.

Each split “is” a sequence of stars and bars.
Each sequence of stars and bars “is” a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!
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How many different 5 star and 2 bar diagrams?

| � | � � � �.

7 positions in which to place the 2 bars.

Alice: 0; Bob 1; Eve: 4
| � | � � � �.
Bars in first and third position.

Alice: 1; Bob 4; Eve: 0
� | � � � � |.
Bars in second and seventh position.
�7

2

�
ways to do so and�7

2

�
ways to split 5 dollars among 3 people.
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Ways to add up n (non-negative) numbers to sum to k?
(For example, how many ways to add up 10 numbers to sum to 50?)
“Sampling with replacement where order doesn’t matter.”

In general, k stars n−1 bars.
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n+k −1 positions from which to choose n−1 bar positions.

�
n+k −1

n−1

�

Or: k unordered choices from set of n possibilities with replacement.
Sample with replacement where order doesn’t matter.
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Summary.

First rule: n1 ×n2 · · ·×n3.

k Samples with replacement from n items: nk .
Sample without replacement: n!

(n−k)!

Second rule: when order doesn’t matter (sometimes) can
divide...

Sample without replacement and order doesn’t matter:
�n

k

�
= n!

(n−k)!k ! .
“n choose k”

One-to-one rule: equal in number if one-to-one correspondence.
pause Bijection!

Sample k times from n objects with replacement and order doesn’t
matter:

�k+n−1
n−1

�
.



What we’ve learned so far

Sample k items out of n.

With Replacement Without Replacement

Order matters nk n!
(n−k)!

Order doesn’t matter
�n+k−1

n−1

� �n
k

�


