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Programming Computers ⌘ Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Induction ⌘ Recursion.

What can computers do?
Work with discrete objects.
Discrete Math =) immense application.

Computers learn and interact with the world?
E.g. machine learning, data analysis.
Probability!

See note 1, for more discussion.
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Explains policies, has homework/discussion worksheets, slides, exam dates, etc.

Questions =) piazza:
piazza.com/berkeley/summer2016/cs70

Assessment:
Homework: 20%
Midterm 1 (07/08): 20%
Midterm 2 (07/29): 20%
Final (08/12): 35%
Quiz: 4%
Sundry: 1%

Conflicts? Piazza pinned post.
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Fan Ye

Just graduated, from Berkeley

Been TA for CS70 for two semesters

Will start working at Google as a software engineer on September

Enjoy climbing, badminton, boxing, also like to watch movies and games
Recently I’m climbing . . . the ladder of league of legends ranking system . . .

Office hours: Monday 10-11, Tuesday 11-12 in Soda 611 or by appointment
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Also did my undergrad here at Cal - CS70 was by far my favorite lower-div.
Fun fact: I like to make ice cream.
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 Grace Dinh

Email: dinh@berkeley.edu

Office Hours: M/W 3:30-5:00 (right after lecture) in 606 Soda

I just finished my first year of grad school. My research interests are numerical 

algorithms and complexity theory - essentially, I work on making faster algorithms for 

doing things like solving equations, factoring matrices, etc. (and proving that they run 

fast!), as well as showing that there are limits on how fast we can make these 

algorithms.
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• Which cards do you need to flip to test the theory?

Answer: Later.
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Today: Note 1. Note 0 is background. Do read/skim it.

The language of proofs!

1. Propositions.

2. Propositional Forms.

3. Implication.

4. Truth Tables

5. Quantifiers

6. More De Morgan’s Laws
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Propositions: Statements that are true or false.

p
2 is irrational Proposition True

2+2 = 4 Proposition True
2+2 = 3 Proposition False
826th digit of pi is 4 Proposition False
Stephen Curry is a good player. Not a Proposition
All evens > 2 are sums of 2 primes Proposition False
4+5 Not a Proposition.
x +x Not a Proposition.
Alice travelled to Chicago Proposition. False

Again: “value” of a proposition is ... True or False
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to conclude that Q is true.
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Truth Table: implication.

P Q P =) Q
T T T
T F
F T
F F
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These two propositional forms are logically equivalent!
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If fish die the plant pollutes.
Not logically equivalent!

• Definition: If P =) Q and Q =) P is P if and only if Q or P () Q.
(Logically Equivalent: () . )
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More for all quantifiers examples.

• “doubling a natural number always makes it larger”

(8x 2 N) (2x > x) False Consider x = 0

Can fix statement...
(8x 2 N) (2x≥x) True

• “Square of any natural number greater than 5 is greater than 25.”

(8x 2 N)(x > 5 =) x2
> 25).

Idea alert: Restrict domain using implication.

Note that we may omit universe if clear from context.
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Quantifiers..not commutative.

• In English: “there is a natural number that is the square of every natural number”.
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Quantifiers....negation...DeMorgan again.

Consider
¬(8x 2 S)(P(x)),
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Consider
¬(8x 2 S)(P(x)),

English: there is an x in S where P(x) does not hold.

That is,
¬(8x 2 S)(P(x)) () 9(x 2 S)(¬P(x)).

What we do in this course! We consider claims.

Claim: (8x) P(x) “For all inputs x the program works.”
For False , find x , where ¬P(x).

Counterexample.
Bad input.
Case that illustrates bug.

For True : prove claim. Next lectures...
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Talk logically
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integer n strictly larger than two.
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Theorem: No three positive integers a,b,c satisfy the equation an +bn = cb for any
integer n strictly larger than two.

Which Theorem?

Fermat’s Last Theorem!

How to express this theorem using propositions?

(8n 2 N); ¬(9a,b,c 2 N);(n ≥ 3 =) an +bn = cn)

Using implication to state edge case restrictions (for any integer strictly greater than
two)

DeMorgan Restatement:
Theorem: ¬(9n 2 N) (9a,b,c 2 N) (n ≥ 3 =) an +bn = cn)
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Next Time: proofs!
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