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Polynomials
Polynomials constitute a rich class of functions which are both easy to describe and widely applicable in
topics ranging from Fourier analysis to computational geometry. In this note, we will discuss properties of
polynomials which make them so useful. We will then describe how to take advantage of these properties to
develop a secret sharing scheme.

Recall from your high school math that a polynomial in a single variable is of the form p(x) = adxd +
ad−1xd−1 + . . .+ a0. Here the variable x and the coefficients ai are usually real numbers. For example,
p(x) = 5x3 +2x+1, is a polynomial of degree d = 3. Its coefficients are a3 = 5, a2 = 0, a1 = 2, and a0 = 1.
Polynomials have some remarkably simple, elegant and powerful properties, which we will explore in this
note.

First, a definition: we say that a is a root of the polynomial p(x) if p(a) = 0. For example, the degree
2 polynomial p(x) = x2− 4 has two roots, namely 2 and −2, since p(2) = p(−2) = 0. If we plot the
polynomial p(x) in the x-y plane, then the roots of the polynomial are just the places where the curve crosses
the x axis:

We now state two fundamental properties of polynomials that we will prove in due course.

Property 1: A non-zero polynomial of degree d has at most d roots.

Property 2: Given d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), with all the xi distinct, there is a unique polynomial
p(x) of degree (at most) d such that p(xi) = yi for 1≤ i≤ d +1.

Let us consider what these two properties say in the case that d = 1. A graph of a linear (degree 1) polynomial
y = a1x+a0 is a line. Property 1 says that if a line is not the x-axis (i.e. if the polynomial is not y = 0), then
it can intersect the x-axis in at most one point.
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Property 2 says that two points uniquely determine a line.

Polynomial Interpolation
Property 2 says that two points uniquely determine a degree 1 polynomial (a line), three points uniquely
determine a degree 2 polynomial, four points uniquely determine a degree 3 polynomial, and so on. Given
d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), how do we determine the polynomial p(x) = adxd + . . .+a1x+a0 such
that p(xi) = yi for i = 1 to d + 1? We will give an efficient algorithms for reconstructing the coefficients
a0, . . . ,ad , and therefore the polynomial p(x).

The method is called Lagrange interpolation: Let us start by solving an easier problem. Suppose that
we are told that y1 = 1 and y j = 0 for 2 ≤ j ≤ d + 1. Now can we reconstruct p(x)? Yes, this is easy!
Consider q(x) = (x− x2)(x− x3) · · ·(x− xd+1). This is a polynomial of degree d (the xi’s are constants, and
x appears d times). Also, we clearly have q(x j) = 0 for 2 ≤ j ≤ d + 1. But what is q(x1)? Well, q(x1) =
(x1− x2)(x1− x3) · · ·(x1− xd+1), which is some constant not equal to 0. Thus if we let p(x) = q(x)/q(x1)
(dividing is ok since q(x1) 6= 0), we have the polynomial we are looking for. For example, suppose you were
given the pairs (1,1), (2,0), and (3,0). Then we can construct the degree d = 2 polynomial p(x) by letting
q(x) = (x−2)(x−3) = x2−5x+6, and q(x1) = q(1) = 2. Thus, we can now construct p(x) = q(x)/q(x1) =
(x2−5x+6)/2.

Of course the problem is no harder if we single out some arbitrary index i instead of 1: i.e. yi = 1 and y j = 0
for j 6= i. Let us introduce some notation: let us denote by ∆i(x) the degree d polynomial that goes through
these d +1 points. Then ∆i(x) =

Π j 6=i(x−x j)
Π j 6=i(xi−x j)

.

Let us now return to the original problem. Given d +1 pairs (x1,y1), . . . ,(xd+1,yd+1), we first construct the
d + 1 polynomials ∆1(x), . . . ,∆d+1(x). Now we can write p(x) = ∑

d+1
i=1 yi∆i(x). Why does this work? First

notice that p(x) is a polynomial of degree d as required, since it is the sum of polynomials of degree d. And
when it is evaluated at xi, d of the d+1 terms in the sum evaluate to 0 and the i-th term evaluates to yi times
1, as required.

As an example, suppose we want to find the degree-2 polynomial p(x) that passes through the three points
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(1,1), (2,2) and (3,4). The three polynomials ∆i are as follows: If d = 2, and xi = i, for instance, then

∆1(x) =
(x−2)(x−3)
(1−2)(1−3)

=
(x−2)(x−3)

2
=

1
2

x2− 5
2

x+3;

∆2(x) =
(x−1)(x−3)
(2−1)(2−3)

=
(x−1)(x−3)

−1
=−x2 +4x−3;

∆3(x) =
(x−1)(x−2)
(3−1)(3−2)

=
(x−1)(x−2)

2
=

1
2

x2− 3
2

x+1.

The polynomial p(x) is therefore given by

p(x) = 1 ·∆1(x)+2 ·∆2(x)+4 ·∆3(x) =
1
2

x2− 1
2

x+1.

You should verify that this polynomial does indeed pass through the above three points.

Proof of Property 2

We would like to prove property 2:

Property 2: Given d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), with all the xi distinct, there is a unique polynomial
p(x) of degree (at most) d such that p(xi) = yi for 1≤ i≤ d +1.

We have shown how to find a polynomial p(x) such that p(xi) = yi for d +1 pairs (x1,y1), . . . ,(xd+1,yd+1).
This proves part of property 2 (the existence of the polynomial). How do we prove the second part, that the
polynomial is unique? Suppose for contradiction that there is another polynomial q(x) such that q(xi) = yi

for all d+1 pairs above. Now consider the polynomial r(x) = p(x)−q(x). Since we are assuming that q(x)
and p(x) are different polynomials, r(x) must be a non-zero polynomial of degree at most d. Therefore,
property 1 implies it can have at most d roots. But on the other hand r(xi) = p(xi)− q(xi) = 0 on d + 1
distinct points. Contradiction. Therefore, p(x) is the unique polynomial that satisfies the d +1 conditions.

Polynomial Division
Let’s take a short digression to discuss polynomial division, which will be useful in the proof of property 1.
If we have a polynomial p(x) of degree d, we can divide by a polynomial q(x) of degree ≤ d by using long
division. The result will be:

p(x) = q(x)q′(x)+ r(x)

where q′(x) is the quotient and r(x) is the remainder. The degree of r(x) must be smaller than the degree of
p(x).

Example. We wish to divide p(x) = x3 + x2−1 by q(x) = x−1:

X2 +2X +2

X−1
)

X3 +X2 −1
−X3 +X2

2X2

−2X2 +2X

2X−1
−2X +2

1

Now p(x) = x3 + x2−1 = (x−1)(x2 +2x+2)+1, r(x) = 1 and q′(x) = x2 +2x+2.
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Proof of Property 1
Now let us turn to property 1: a non-zero polynomial of degree d has at most d roots.The idea of the proof
is as follows. We will prove the following claims:

Claim 1 If a is a root of a polynomial p(x) with degree d, then p(x) = (x−a)q(x) for a polynomial
q(x) with degree d−1.

Claim 2 A polynomial p(x) of degree d with distinct roots a1, . . . ,ad can be written as p(x) = c(x−
a1) · · ·(x−ad).

Claim 2 implies property 1. We must show that a 6= ai for i = 1, . . .d cannot be a root of p(x). But this
follows from claim 2, since p(a) = c(a−a1) · · ·(a−ad) 6= 0.

Proof of Claim 1

Dividing p(x) by (x−a) gives p(x) = (x−a)q(x)+r(x), where q(x) is the quotient and r(x) is the remainder.
The degree of r(x) is necessarily smaller than the degree of the divisor (x− a). Therefore r(x) must have
degree 0 and therefore is some constant c. But now substituting x = a, we get p(a) = c. But since a is a
root, p(a) = 0. Thus c = 0 and therefore p(x) = (x−a)q(x), thus showing that (x−a)|p(x).

Claim 1 implies Claim 2

Proof by induction on d.

• Base Case: We must show that a polynomial p(x) of degree 1 with root a1 can be written as p(x) =
c(x−a1). By Claim 1, we know that p(x) = (x−a1)q(x), where q(x) has degree 0 and is therefore a
constant.

• Inductive Hypothesis: A polynomial of degree d−1 with distinct roots a1, . . . ,ad−1 can be written as
p(x) = c(x−a1) · · ·(x−ad−1).

• Inductive Step: Let p(x) be a polynomial of of degree d with distinct roots a1, · · · ,ad . By Claim
1, p(x) = (x− ad)q(x) for some polynomial q(x) of degree d− 1. Since 0 = p(ai) = (ai− ad)q(ai)
for all i 6= d and ai− ad 6= 0 in this case, q(ai) must be equal to 0. Then q(x) is a polynomial of
degree d− 1 with distinct roots a1, . . . ,ad−1. We can now apply the inductive assumption to q(x)
to write q(x) = c(x− a1) · · ·(x− ad−1). Substituting in p(x) = (x− ad)q(x), we finally obtain that
p(x) = c(x−a1) · · ·(x−ad).

Finite Fields
Both property 1 and property 2 also hold when the values of the coefficients and the variable x are chosen
from the complex numbers instead of the real numbers or even the rational numbers. They do not hold if the
values are restricted to being natural numbers or integers. Let us try to understand this a little more closely.
The only properties of numbers that we used in polynomial interpolation and in the proof of property 1 is
that we can add, subtract, multiply and divide any pair of numbers as long as we are not dividing by 0. We
cannot subtract two natural numbers and guarantee that the result is a natural number. And dividing two
integers does not usually result in an integer.
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But if we work with numbers modulo a prime m, then we can add, subtract, multiply and divide (by any
non-zero number modulo m). To check this, recall that x has an inverse mod m if gcd(m,x) = 1, so if m is
prime all the numbers {1, . . . ,m−1} have an inverse mod m. So both property 1 and property 2 hold if the
coefficients and the variable x are restricted to take on values modulo m. This remarkable fact that these
properties hold even when we restrict ourselves to a finite set of values is the key to several applications that
we will presently see.

Let us consider an example of degree d = 1 polynomials modulo 5. Let p(x) = 2x+ 3(mod5). The roots
of this polynomial are all values x such that 2x+3 = 0(mod 5) holds. Solving for x, we get that 2x =−3 =
2(mod 5) or x = 1(mod 5). Note that this is consistent with property 1 since we got only 1 root of a degree
1 polynomial.

Now consider the polynomials p(x) = 2x+ 3 and q(x) = 3x− 2 with all numbers reduced mod 5. We can
plot the value of each polynomial y as a function of x in the x-y plane. Since we are working modulo 5, there
are only 5 possible choices for x, and only 5 possible choices for y:

Notice that these two “lines" intersect in exactly one point, even though the picture looks nothing at all like
lines in the Euclidean plane! Looking at these graphs it might seem remarkable that both property 1 and
property 2 hold when we work modulo m for any prime number m. But as we stated above, all that was
required for the proofs of property 1 and 2 was the ability to add, subtract, multiply and divide any pair of
numbers (as long as we are not dividing by 0), and they hold whenever we work modulo a prime m.

When we work with numbers modulo a prime m, we say that we are working over a finite field, denoted
by Fm or GF(m) (for Galois Field). In order for a set to be called a field, it must satisfy certain axioms
which are the building blocks that allow for these amazing properties and others to hold. If you would like
to learn more about fields and the axioms they satisfy, you can visit Wikipedia’s site and read the article
on fields: http://en.wikipedia.org/wiki/Field_\%28mathematics\%29. While you are
there, you can also read the article on Galois Fields and learn more about some of their applications and
elegant properties which will not be covered in this lecture: http://en.wikipedia.org/wiki/
Galois_field.

Counting
How many polynomials of degree (at most) 2 are there modulo m? This is easy: there are 3 coefficients,
each of which can take on one of m values for a total of m3. Writing p(x) = adxd +ad−1xd−1 + . . .+a0 by
specifying its d +1 coefficients ai is known as the coefficient representation of p(x). Is there any other way
to specify p(x)?

Sure, there is! Our polynomial of degree (at most) 2 is uniquely specified by its values at any three points, say
x = 0,1,2. Once again each of these three values can take on one of m values, for a total of m3 possibilities.
In general, we can specify a degree d polynomial p(x) by specifying its values at d+1 points, say 0,1, . . . ,d.
These d+1 values, (y0,y1, . . . ,yd) are called the value representation of p(x). The coefficient representation

CS 70, Summer 2016, Note 22 5



can be converted to the value representation by evaluating the polynomial at 0,1, . . . ,d. And as we’ve seen,
polynomial interpolation can convert the value representation to the coefficient representation.

So if we are given three pairs (x1,y1),(x2,y2),(x3,y3) then there is a unique polynomial of degree 2 such
that p(xi) = yi. But now, suppose we were only given two pairs (x1,y1),(x2,y2); how many distinct degree
2 polynomials are there that go through these two points? Notice that there are exactly m choices for y3, and
for each choice there is a unique (and distinct) polynomial of degree 2 that goes through the three points
(x1,y1),(x2,y2),(x3,y3). It follows that there are exactly m polynomials of degree at most 2 that go through
2 points (x1,y1),(x2,y2), as shown below:

What if you were only given one point (x1,y1)? Well, there are m2 choices for y2 and y3, yielding m2 poly-
nomials of degree at most 2 that go through the point given. A pattern begins to emerge, as is summarized
in the following table:

Polynomials of degree ≤ d over Fm

# of points # of polynomials
d +1 1

d m
d−1 m2

...
...

d− k mk+1

...
...

0 md+1

Note that the reason that we can count the number of polynomials in this setting is because we are working
over a finite field. If we were working over an infinite field such as the rationals, there would be infinitely
many polynomials of degree d that can go through d points! Think of a line, which has degree one. If you
were just given one point, there would be infinitely many possibilities for the second point, each of which
uniquely defines a line.

Secret Sharing
In the late 1950’s and into the 1960’s, during the Cold War, President Dwight D. Eisenhower approved
instructions and authorized top commanding officers for the use of nuclear weapons under very urgent
emergency conditions. Such measures were set up in order to defend the United States in case of an attack
in which there was not enough time to confer with the President and decide on an appropriate response. This
would allow for a rapid response in case of a Soviet attack on U.S. soil. This is a perfect situation in which
a secret sharing scheme could be used to ensure that a certain number of officials must come together in
order to successfully launch a nuclear strike, so that for example no single person has the power and control
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over such a devastating and destructive weapon. Suppose the U.S. government finally decides that a nuclear
strike can be initiated only if at least k > 1 major officials agree to it. We want to devise a scheme such that
(1) any group of k of these officials can pool their information to figure out the launch code and initiate the
strike but (2) no group of k−1 or fewer have any information about the launch code, even if they pool their
knowledge. For example, they should not learn whether the secret is odd or even, a prime number, divisible
by some number a, or the secret’s least significant bit. How can we accomplish this?

Suppose that there are n officials indexed from 1 to n and the launch code is some natural number s. Let q
be a prime number larger than n and s. We will work over GF(q) from now on.

Now pick a random polynomial P(x) of degree k− 1 such that P(0) = s and give P(1) to the first official,
P(2) to the second,. . . , P(n) to the nth. Then

• Any k officials, having the values of the polynomial at k points, can use Lagrange interpolation to find
P, and once they know what P is, they can compute P(0) = s to learn the secret. Another way to say
this is that any k officials have between them a value representation of the polynomial, which they can
convert to the coefficient representation, which allows them to evaluate P(0) = s.

• Any group of k− 1 officials has no information about s. So they know only k− 1 points through
which P(x), an unknown polynomial of degree k− 1 passes. They wish to reconstruct P(0). But by
our discussion in the previous section, for each possible value P(0) = b, there is a unique polynomial
of degree k− 1 that passes through the k− 1 points of the k− 1 officials as well as through (0,b).
Hence the secret could be any of the q possible values {0,1, . . . ,q− 1}, so the officials have—in a
very precise sense—no information about s. Another way of saying this is that the information of the
officials is consistent with q different value representations, one for each possible value of the secret,
and thus the officials have no information about s. (Note that this is the main reason we choose to
work over finite fields rather than, say, over the real numbers, where the basic secret-sharing scheme
would still work. Because there are only finitely many values in our field, we can quantify precisely
how many remaining possibilities there are for the value of the secret, and show that this is the same
as if the officials had no information at all.)

Example. Suppose you are in charge of setting up a secret sharing scheme, with secret s = 1, where you
want to distribute n = 5 shares to 5 people such that any k = 3 or more people can figure out the secret, but
two or fewer cannot. Let’s say we are working over GF(7) (note that 7 > s and 7 > n) and you randomly
choose the following polynomial of degree k−1 = 2 : P(x) = 3x2 +5x+1 (here, P(0) = 1 = s, the secret).
So you know everything there is to know about the secret and the polynomial, but what about the people
that receive the shares? Well, the shares handed out are P(1) = 2 to the first official, P(2) = 2 to the second,
P(3) = 1 to the third, P(4) = 6 to the fourth, and P(5) = 3 to the fifth official. Let’s say that officials 3,
4, and 5 get together (we expect them to be able to recover the secret). Using Lagrange interpolation, they
compute the following delta functions:

∆3(x) =
(x−4)(x−5)
(3−4)(3−5)

=
(x−4)(x−5)

2
= 4(x−4)(x−5);

∆4(x) =
(x−3)(x−5)
(4−3)(4−5)

=
(x−3)(x−5)

−1
= 6(x−3)(x−5);

∆5(x) =
(x−3)(x−4)
(5−3)(5−4)

=
(x−3)(x−4)

2
= 4(x−3)(x−4).

They then compute the polynomial over GF(7): P(x) = (1)∆3(x) + (6)∆4(x) + (3)∆5(x) = 3x2 + 5x+ 1
(verify the computation!). Now they simply compute P(0) and discover that the secret is 1.
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Let’s see what happens if two officials try to get together, say persons 1 and 5. They both know that the
polynomial looks like P(x) = a2x2 +a1x+ s. They also know the following equations:

P(1) = a2 +a1 + s = 2

P(5) = 4a2 +5a1 + s = 3

But that is all they have two equations with three unknowns, and thus they cannot find out the secret. This
is the case no matter which two officials get together. Notice that since we are working over GF(7), the
two people could have guessed the secret (0 ≤ s ≤ 6) and constructed a unique degree 2 polynomial (by
property 2). But the two people combined have the same chance of guessing what the secret is as they do
individually. This is important, as it implies that two people have no more information about the secret than
one person does.
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