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Introduction
These notes explain the theory of finite Markov chains. For CS70, we do not cover the proofs that are
discussed in Appendix 2.

Markov chains are models of random motion in a finite or countable set. These models are powerful because
they capture a vast array of systems that we encounter in applications. Yet, the models are simple in that
many of their properties can often be determined using elementary matrix algebra. In this course, we limit
the discussion to the case of finite Markov chains, i.e., motions in a finite set.

Imagine the following scenario. You flip a fair coin until you get two consecutive ‘heads’. How many times
do you have to flip the coin, on average? You roll a balanced six-sided die until the sum of the last two rolls
is 8. How many times do you have to roll the die, on average?

As another example, say that you play a game of ‘heads or tails’ using a biased coin that yields ‘heads’ with
probability 0.48. You start with $10. At each step, if the flip yields ‘heads’, you earn $1. Otherwise, you
lose $1. What is the probability that you reach $100 before $0? How long does it take until you reach either
$100 or $0?

You try to go up a ladder that has 20 rungs. At each time step, you succeed in going up by one rung with
probability 0.9. Otherwise, you fall back to the ground. How many time steps does it take you to reach the
top of the ladder, on average?

You look at a web page, then select randomly one of the links on that page, with equal probabilities. You
then repeat on the next page you visit, and so on. As you keep browsing the web in that way, what fraction
of the time do you open a given page? How long does it take until you reach a particular page? How likely
is it that you visit a given page before another given page?

These questions can be answered using the methods of Markov chains, as we explain in these notes.

A First Example
Figure 1 illustrates a simple Markov chain. It describe a random motion in the set {0,1}. The position at
time n = 0,1,2, . . . is Xn ∈ {0,1}. We call Xn the state of the Markov chain at step (or time) n. The set
{0,1} is the state space, i.e., the set of possible values of the state. The motion, i.e., the time evolution, of

0 1

Figure 1: A simple Markov chain
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Xn follows the following rules. One is given a number a ∈ [0,1] and two nonnegative numbers π0(0) and
π0(1) that add up to 1. Then,

Pr[X0 = 0] = π0(0) and Pr[X0 = 1] = π0(1). (1)

That is, the initial state X0 is equal to 0 with probability π0(0), otherwise it is 1. Then for n≥ 0,

Pr[Xn+1 = 0|Xn = 0,Xn−1, . . . ,X0] = 1−a (2)

Pr[Xn+1 = 1|Xn = 0,Xn−1, . . . ,X0] = a (3)

Pr[Xn+1 = 0|Xn = 1,Xn−1, . . . ,X0] = a (4)

Pr[Xn+1 = 1|Xn = 1,Xn−1, . . . ,X0] = 1−a. (5)

Figure 1 summarizes the rules (2)-(5). These rules specify the transition probabilities of the Markov chain.
Rules (2)-(3) specify that if the Markov chain is in state 0 at step n, then at the next step it stays in state
0 with probability 1− a and it moves to state 1 with probability a, independently of what happened in the
previous steps. Thus, the Markov chain may have been in state 0 for a long time prior to step n, or it may
have just moved into state 0, but the probability of staying in state 0 one more step is 1−a in those different
cases. Rules (4)-(5) are similar. Figure 1 is called the state transition diagram of the Markov chain. It
captures the transition probabilities in a graphical form.

In a sense, the Markov chain is amnesic: at step n, it forgets what it did before getting to the current state
and its future steps only depend on that current state. Here is one way to think of the rules of motion. When
the Markov chain gets to state 0, it flips a coin. If the outcome is H, which occurs with probability a, then it
goes to state 1; otherwise, it stays in state 0 one more step. The situation is similar when the Markov chain
gets to state 1.

We define the transition probability matrix P by P(0,0) = 1− a,P(0,1) = a,P(1,0) = a,P(1,1) = 1− a.
That is

P =

[
1−a a

a 1−a

]
.

Hence,
Pr[Xn+1 = j | Xn = i,Xn−1, . . . ,X0] = P(i, j), for n≥ 0 and i, j ∈ {0,1}.

Figure 2 shows some simulations of the Markov chain with different values of a. When a= 0.1, it is unlikely
that the state of the Markov chain changes in one step. As the figure shows, the Markov chain spends many
steps in one state before switching. For larger values of a, the state of the Markov chain changes more
frequently. Note that, by symmetry, over the long term the Markov chain spends half of the time in each
state.

A Second Example
Figure 3 shows the state transition diagram of a small web browsing experiment. Each state in the figure
represents a web page. The arrows out of a state correspond to links on the page that point to other pages.
The transition probabilities are not indicated on the figure, but the model is that each outgoing link is equally
likely. The figure corresponds to the following probability transition matrix:

P =


0 1/2 0 1/2 0
0 0 1 0 0
1 0 0 0 0

1/3 1/3 0 0 1/3
0 1/2 1/2 0 0

 .
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Figure 2: Simulations of the two-state Markov chain

Figure 3: A five-state Markov chain. The outgoing arrows are equally likely.

Figure 4: Simulation of the five-state Markov chain.
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Figure 4 shows a simulation of the five-state Markov chain.

Finite Markov Chains
One defines a general finite Markov chain as follows. The state space is X = {1,2, . . . ,K} for some finite
K. The transition probability matrix P is a K×K matrix such that

P(i, j)≥ 0,∀i, j ∈X

and
K

∑
j=1

P(i, j) = 1,∀i ∈X .

The initial distribution is a vector π0 = {π0(i), i ∈X } where π0(i)≥ 0 for all i ∈X and ∑i∈X π0(i) = 1.

One then defines the random sequence {Xn,n = 0,1,2, . . .} by

Pr[X0 = i] = π0(i), i ∈X (6)

Pr[Xn+1 = j | Xn = i,Xn−1, . . . ,X0] = P(i, j),∀n≥ 0,∀i, j ∈X . (7)

Note that

Pr[X0 = i0,X1 = i1, . . . ,Xn = in]

= Pr[X0 = i0]Pr[X1 = i1|X0 = i0]Pr[X2 = i2|X0 = i0,X1 = i1] · · ·Pr[Xn = in|X0 = i0, . . . ,Xn−1 = in−1]

= π0(i0)P(i0, i1) · · ·P(in−1, in).

Consequently,

Pr[Xn = in] = ∑
i0,...in−1

Pr[X0 = i0,X1 = i1, . . . ,Xn = in]

= ∑
i0,...in−1

π0(i0)P(i0, i1) · · ·P(in−1, in)

= π0Pn(in)

where the last expression is component in of the product of the row vector π0 times the n-th power of the
matrix P.

Thus, if we designate by πn the distribution of Xn, so that Pr[Xn = i] = πn(i), then the last derivation proves
the following result.

Theorem 18.1. One has
πn = π0Pn,n≥ 0. (8)

In particular, if π0(i) = 1 for some i, then πn( j) = Pn(i, j) = Pr[Xn = j|X0 = i].

For the two-state Markov chain, one can verify that

Pn =

[
1−a a

a 1−a

]n

=

[
1/2+(1/2)(1−2a)n 1/2− (1/2)(1−2a)n

1/2− (1/2)(1−2a)n 1/2+(1/2)(1−2a)n

]
. (9)

Note that if 0 < a < 1,

Pn→
[

1/2 1/2
1/2 1/2

]
, as n→ ∞.

Consequently, for 0 < a < 1, one has πn = π0Pn→ [1/2,1/2] as n→ ∞.
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Balance Equations
The following definition introduces the important notion of invariant distribution.

Definition 18.1. A distribution π is invariant for the transition probability matrix P if it satisfies the following
balance equations:

π = πP. (10)

The relevance of this definition is stated in the next result.

Theorem 18.2. One has
πn = π0,∀n≥ 0

if and only if π0 is invariant.

Proof:

If πn = π0 for all n≥ 0, then π0 = π1 = π0P, so that π0 satisfies (10) and is thus invariant.

If π0P = π0, then π1 = π0P = π0. Also, if πn = π0, then πn+1 = πnP = π0P = π0.

For instance, in the case of the two-state Markov chain, the balance equations are

π(0) = π(0)(1−a)+π(1)a

π(1) = π(0)a+π(1)(1−a).

Each of these two equations is equivalent to

π(0) = π(1).

Thus, the two equations are redundant. If we add the condition that the components of π add up to one, we
find that the only solution is [π(0),π(1)] = [1/2,1/2], which is not surprising in view of symmetry.

For the five-state Markov chain, the balance equations are

[π(A),π(B),π(C),π(D),π(E)] = [π(A),π(B),π(C),π(D),π(E)]


0 1/2 0 1/2 0
0 0 1 0 0
1 0 0 0 0

1/3 1/3 0 0 1/3
0 1/2 1/2 0 0

 .
Once again, these five equations in the five unknowns are redundant. They do not determine π uniquely.
However, if we add the condition that the components of π add up to one, then we find that the solution is
unique and given by (see the appendix for the calculations)

[π(A),π(B),π(C),π(D),π(E)] =
1

39
[12,9,10,6,2]. (11)

Thus, in this web-browsing examples, page A is visited most often, then page C, then page B. A Google
search would return the pages in order of most frequent visits, i.e., in the order A,C,B,D,E. This ranking
of the pages is called PageRank and can be determined by solving the balance equations. (In fact, the actual
ranking by Google combines the estimate of π with other factors.)

How many invariant distributions does a Markov chain have? We have seen that for the two examples, the
answer was one. However, that is not generally the case. For instance, consider the two-state Markov chain
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with a = 0 instead of 0 < a < 1 as we assumed previously. This Markov chain does not change state. Its
transition probability matrix is P = I where I denotes the identity matrix. Since πI = π for any vector π , we
see that any distribution is invariant for this Markov chain. This is intuitively clear since the Markov chain
does not change state, so that the distribution of the state does not change.

However, we show in Theorem 18.3 that a simple condition guarantees the uniqueness of the invariant
distribution.

Fraction of Time in States
How much time does a Markov chain spend in state i, in the long term? That is, what is the long term
fraction of time that Xn = i? We can write this long term fraction of time as

lim
n→∞

1
n

n−1

∑
m=0

1{Xm = i}.

To understand this expression, note that ∑
n−1
m=0 1{Xm = i} counts the number of steps among steps {0,1, . . . ,n−

1} that Xm = i. Thus, 1
n ∑

n−1
m=0 1{Xm = i} is the fraction of time among the first n steps that Xm = i. By taking

the limit, we obtain the long term fraction of time that Xm = i.

To study this long term fraction of time, we need one property: irreducibility.

Definition 18.2 (Irreducible). A Markov chain is irreducible if it can go from every state i to every other
state j, possibly in multiple steps.

The two-state Markov chain is irreducible when 0 < a < 1, not when a = 0. The Markov chain in Figure
3 is irreducible. Observe that a Markov chain is irreducible if and only if its state transition diagram is a
directed graph with a single connected component. In this transition diagram, there is an arrow from state i
to state j if P(i, j)> 0.

Here is a remarkable result.

Theorem 18.3. Consider a finite irreducible Markov chain with state space X and transition probability
matrix P. Then, for any initial distribution π0,

lim
n→∞

1
n

n−1

∑
m=0

1{Xm = i}= π(i),∀i ∈X . (12)

In (12), π = {π(i), i ∈X } is an invariant distribution. Consequently, the invariant distribution exists and
is unique.

We sketch the proof of the result in the appendix. Here, we outline the main points of the argument. Consider
the Markov chain in Figure 3. Assume that X0 = A and let T (A) be the first time after 0 that the Markov
chain comes back to A. This random time has some mean value E[T (A)]. Let π(A) = 1/E[T (A)]. Thus,
the time between two visits to A has mean value E[T (A)], so that the fraction of time that the Markov chain
is in state A is π(A). Hence, over a long time n, the Markov chain is in state A for about nπ(A) steps. We
define π(i) in the same way for the other states. These fractions of time in the different states must add up
to one. Also, we claim that π satisfies the balance equations. To see this, note that over a large number n
of steps, the Markov chain visits D and then A about nπ(D)P(D,A) times. Indeed, it visits D about nπ(D)
times and each of these visits is followed by a visit to A with probability P(D,A). Similarly, if visits C and
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then A about nπ(C)P(C,A) times. Thus, a general Markov chain visits some state j and then state i about
nπ( j)P( j, i) times in n steps, for j ∈X . Now, the total number of visits to i in n steps is the total number
of visits to some j followed by a visit to i. Hence, nπ(i) = ∑ j nπ( j)P( j, i), which shows that π solves the
balance equations.

Is it the case that Pr[Xn = i] converges to some value as n increases? A simple example shows that this does
not have to be the case. Consider our two-state Markov chain and assume that a = 1. This Markov chain
keeps switching state, at every step. Thus, if X0 = 0, then X1 = 1,X2 = 0,X3 = 1,X4 = 0, and so on. For this
Markov chain, Pr[Xn = 0] = 1 when n is even and Pr[Xn = 0] = 0 when n is odd. Hence, Pr[Xn = 0] keeps
on oscillating between 0 and 1 and does not converge. Such a Markov chain is said to be periodic. However,
if a ∈ (0,1), then our calculations after Theorem 18.3 showed that Pr[Xn = 0]→ 1/2 as n→ ∞.

The following theorem generalizes this example.

Theorem 18.4. Consider an irreducible Markov chain on X with transition probability matrix P. Define

d(i) := g.c.d{n > 0 | Pn(i, i) = Pr[Xn = i|X0 = i]> 0}, i ∈X . (13)

(a) Then, d(i) has the same value for all i ∈X . If that value is 1, the Markov chain is said to be aperiodic.
Otherwise, it is said to be periodic with period d.

(b) If the Markov chain is aperiodic, then

Pr[Xn = i]→ π(i),∀i ∈X , as n→ ∞. (14)

In (14), π is the unique invariant distribution.

To explain this theorem, we first need to clarify (13). For a given state i, the quantity d(i) is the greatest
common divisor or all the integers n > 0 so that the Markov chain can go from state i to state i in n steps.

For instance, for the Markov chain in Figure 1, assume that a = 1. In that case, the Markov chain can go
from state 0 to state 0 in n steps for all n in the set {2,4,6,8, . . .}. Thus, d(0) = g.c.d{2,4,6, . . .} = 2.
Similarly, we find that d(1) = 2. The Markov chain is irreducible and Theorem 18.4 correctly predicted that
d(0) = d(1). This Markov chain is periodic with period 2. If a ∈ (0,1), then the Markov chain can go from
state 0 to state 0 in any n ≥ 1 steps. Thus, d(0) = g.c.d{1,2,3, . . .} = 1. Similarly d(1) = 1. The Markov
chain is aperiodic and the theorem predicts that πn(i)→ π(i) = 1/2, as we had verified explicitly.

As another example, consider the Markov chain in Figure 3. This Markov chain is irreducible. Is it aperi-
odic? Looking at the state transition diagram, we see that

d(A) = g.c.d{2,3, . . .}= 1.

Indeed, the Markov chain can go from state A to state A in two steps (A→ D→ A) and in three steps
(A→ B→C→ A). Thus, the Markov chain is aperiodic. Just for fun, let us compute d(B). We find d(B) =
g.c.d.{3,4, . . .} = 1. Thus, Theorem 18.4 implies that πn(i)→ π(i). For instance, Pr[Xn = A]→ 12/39.
This is a powerful result because computing πn directly is not that simple!

We give the proof of the theorem in the appendix. Here are the key points of the argument when the Markov
chain is aperiodic. Consider the Markov chain of Figure 3. Note that S(E) := {n > 0 | Pn(E,E) > 0} =
{4,5,6, . . .}. Thus, any n≥ n(E) := 4 is such that n ∈ S(E). In general, one can show that if d(i) = 1, then
there is some integer n(i) so that {n(i),n(i)+ 1, . . .} ⊂ S(i). Note also that the Markov chain can go from
state C to E is some finite number a of steps (here, a = 3). Also, it can go from E to C is b steps (here,
b = 1). Hence, it can go from C to C in a+n+b steps for any n≥ n(E) by first going from C to E in a steps,
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then from E to E in n steps, then from E to C in b steps. Thus, S(C) contains two consecutive integers, so
that its g.c.d. d(C) is equal to one. Similarly, d( j) = 1 for any state j if there is some state i with d(i) = 1.
Also, this argument shows that there is some integer k so that the Markov chain can go from any state j to
some specific state i in k steps (the same k for all j). The next idea is a coupling argument. Imagine two
independent versions of the Markov chain. The claim is that they must meet after some finite time. Indeed,
every k steps, they have a positive probability of meeting in state i. Now, say that one version Xn starts with
the invariant distribution π and the other, Zn starts with some arbitrary distribution π0. Define Yn so that it
agrees with Zn until it meets with Xn and thereafter stays glued to Xn. The point is that Yn is a Markov chain
with transition matrix P and initial distribution π0. But, since it meets with Xn after a finite time, we see that
Pr[Yn = i]→ Pr[Xn = i] = π(i).

Hitting Time
Consider the Markov chain in Figure 3. Assume it starts in state A. What is the average number of steps
until it reaches state E? To calculate that average time, for i ∈ {A,B,C,D,E}, define β (i) to be the average
time until the Markov chain reaches state E given that it starts from state i.

Thus, β (E) = 0 since it takes 0 step to reach E when starting in state E. We want to calculate β (A).
However, it turns out that to calculate β (A), one also has to calculate β (B), . . . ,β (D). We do this by finding
equations that these quantities satisfy. We then solve these equations.

We claim that
β (A) = 1+(1/2)β (B)+(1/2)β (D). (15)

To see this, note that when the Markov chain starts in state A, it stays there for one step. Then, with
probability 1/2 it moves to state B. In that case, the average time untill it reaches E is β (B). With probability
1/2, the Markov chain moves to state D and then takes β (D) steps, on average to reach E. Thus, the time to
reach E starting from state A is 1 step plus an average of β (B) steps with probability 1/2 and an average of
β (D) steps with probability 1/2. Equation (15) capture that decomposition of the time to reach E starting
from A.

An identity similar to (15) can be written for every starting state. We find

β (A) = 1+(1/2)β (B)+(1/2)β (D)

β (B) = 1+β (C)

β (C) = 1+β (A)

β (D) = 1+(1/3)β (A)+(1/3)β (B)+(1/3)β (E)

β (E) = 0.

These equations are called the first step equations (FSE). Solving these equations, we find (see the appendix
for the calculations)

β (A) = 17,β (B) = 19,β (C) = 18,β (D) = 13,β (E) = 0. (16)

Let us now consider a general finite Markov chain with transition probability matrix P on the state space
X . Let A ⊂X be a set of states. For each i ∈X , let β (i) be average number of steps until the Markov
chain enters one of the states in A, given that it starts in state i.
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Figure 5: Flipping a fair coin until two heads in row.

Then one has

β (i) = 0, if i ∈ A

β (i) = 1+ ∑
j∈X

P(i, j)β ( j).

These equations are called the first step equations (FSE) for the average hitting time.

As another example, consider the Markov chain in Figure 1. Let β (i) be the average number of steps until
the Markov chain enters state 1. The first step equations are

β (0) = 1+(1−a)β (0)+β (1)

β (1) = 0;

Solving, we find β (0) = 1/a. Note that the time to enter state 1 starting from state 0 is the number of times
one has to flip a loaded coin with Pr[H] = a until the first heads. This number of steps has a geometric
distribution with parameter a. Thus, we have rediscovered the fact that the mean value of a G(a) random
variable is 1/a.

Say that you flip a fair coin repeatedly until you get two heads in a row. How many times do you have to
flip the coin, on average? Figure 5 shows a state transition diagram that corresponds to that situation. The
Markov chain starts in state S. The state is H or T if the last coin flip was H or T , except that the state is E if
the last two flips where heads. For i ∈ {S,T,H,E}, let β (i) be the average number of steps until the Markov
chain enters state E. The first step equations are

β (S) = 1+(1/2)β (T )+(1/2)β (H)

β (T ) = 1+(1/2)β (T )+(1/2)β (H)

β (H) = 1+(1/2)β (T )+(1/2)β (E)

β (E) = 0.

Solving, we find
β (S) = 6. (17)

(See the appendix for the calculations.)

Now assume you roll a balanced six-sided die until the sum of the last two rolls is 8. The Markov chain that
corresponds to this situation has a start state S, a state i for i ∈ {1,2, . . . ,6} that indicates the value of the
last roll, and an end state E that the Markov chain enters when the sum of the last two rolls is 8. Thus, if the
state of the Markov chain is 5 and if the next roll is 2, then the new state is 2. However, if the next roll is 3,
then the Markov chain enters state E. The first step equations for the average time β (i) it takes the Markov
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chain to enter state E are as follows:

β (S) = 1+
6

∑
i=1

(1/6)β (i)

β (i) = 1+ ∑
j s.t. i+ j 6=8

(1/6)β ( j).

Solving, we find
β (S) = 8.4. (18)

(See the appendix for the calculations.)

Consider now the 20-rung ladder. A man starts on the ground. At each step, he moves up one rung with
probability p and falls back to the ground otherwise. Let β (i) be the average number of steps needed to
reach the top rung, starting from rung i ∈ {0,1, . . . ,20} where rung 0 refers to the ground. The first step
equations are

β (i) = 1+(1− p)β (0)+ pβ (i+1), i = 0, . . . ,19

β (20) = 0.

Solving, we find

β (0) =
p−20−1

1− p
. (19)

(See the appendix for the calculations.) For instance, if p = 0.9, then β (0) ≈ 72. Also, if p = 0.8, then
β (0)≈ 429. The morale of the story is that you have to be careful on a ladder.

Assume we play a game of heads-or-tails with a coin such that Pr[H] = p. For every heads, your fortune
increases by 1 and for every tails, it decreases by 1. The initial fortune is m. Let β (n) be the average time
until the fortune reaches the value 0 or the value M where M > m. The first step equations are

β (n) = 1+(1− p)β (n−1)+ pβ (n+1), for n = 1, . . . ,M−1

β (0) = β (M) = 0.

Solving, we find

β (n) = n(1−2p)−1−M(1−2p)−1

1−ρM (1−ρ
n). (20)

(See the appendix for the calculations.)

Probability of A before B

Let Xn be a finite Markov chain with state space X and transition probability matrix P. Let also A and B
be two disjoint subsets of X . We want to determine the probability α(i) that, starting in state i, the Markov
chain enters one of the states in A before one of the states in B.

The first step equations for α(i) are

α(i) = ∑
j

P(i, j)α( j),∀i /∈ A∪B

α(i) = 1,∀i ∈ A

α(i) = 0,∀i ∈ B.
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To see why the first set of equations hold, we observe that the event that theMarkov chain enters A before B
starting from i is partitioned into the events that it does so by first moving to state j, for all possible value
of j. Now, the probability that it enters A before B starting from i after moving first to j is the probability
that it enters A before B starting from j, because the Markov chain is amnesic. The second and third sets of
equations are obvious.

As an illustration, consider again the game of heads and tails and let α(n) be the probability that your fortune
reaches M before 0 when starting from n with 0≤ n≤M. The first step equations are

α(n) = (1− p)α(n−1)+ pα(n+1),0 < n < M

α(M) = 1

α(0) = 0.

Solving these equations, we find

α(n) =
1−ρn

1−ρM (21)

where ρ := (1− p)p−1. (See the appendix for the calculations.) For instance, with p = 0.48 and M = 100,
we find that α(10) ≈ 4× 10−4, which is sobering when contemplating a trip to Las Vegas. Note that
for each gambler who plays this game, the Casino makes $10.00 with probability 1− 4× 10−4 and loses
$990.00 with probability 4× 10−4, so that the expected gain of the Casino per gambler is approximately
(1−4×10−4)×$10.00−4×10−4×$990.00≈ $9.60. Observe that the probability of winning in one step
is 48%, so that if the gamble did bet everything on a single game and stopped after one step, the Casino
would only make 0.52× $10.00− 0.48× $10.00 = $0.40 on average per gambler, instead of $9.60. The
morale of the story is: don’t push your luck!

Appendix 1: Calculations
This section presents the details of the calculations of this note.

Identity (9)

By symmetry, we can write

Pn =

[
1−αn αn

αn 1−αn

]
for some αn that we determine below. Note that α1 = a. Also,

Pn+1 =

[
1−αn+1 αn+1

αn+1 1−αn+1

]
= PPn =

[
1−a a

a 1−a

][
1−αn αn

αn 1−αn

]
.

Consequently, by looking at component (0,1) of this product,

αn+1 = (1−a)αn +a(1−αn) = a+(1−2a)αn.

Let us try a solution of the form αn = b+ cλ n. We need

αn+1 = b+ cλ
n+1 = a+(1−2a)αn = a+(1−2a)[b+ cλ

n] = a+(1−2a)b+(1−2a)cλ
n.

Matching the terms, we see that this identity holds if

b = a+(1−2a)b and λ = 1−2a.
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The first equation gives b = 1/2. Hence, αn = 1/2+ c(1−2a)n. To find c, we use the fact that α1 = a, so
that 1/2+ c(1−2a) = a, which yields c =−1/2.

Hence, αn = 1/2− (1/2)(1−2a)n.

Identity (11)

The balance equations are π = πP.

We know that the equations do not determine π uniquely. Let us choose arbitrarily π(A) = 1. We then solve
for the other components of π and we renormalize later. We can ignore any equation we choose. Let us
ignore the first one. The new equations are

[π(B),π(C),π(D),π(E)] = [1,π(B),π(C),π(D),π(E)]


1/2 0 1/2 0
0 1 0 0
0 0 0 0

1/3 0 0 1/3
1/2 1/2 0 0

 .
Equivalently,

[π(B),π(C),π(D),π(E)] = [1/2,0,1/2,0]+ [π(B),π(C),π(D),π(E)]


0 1 0 0
0 0 0 0

1/3 0 0 1/3
1/2 1/2 0 0

 .
By inspection, we see that π(D) = 1/2, then π(E) = (1/3)π(D) = 1/6, then π(B) = 1/2+(1/3)π(D)+
(1/2)π(E) = 1/2+1/6+1/12 = 3/4. Finally, π(C) = π(B)+(1/2)π(E) = 3/4+1/12 = 5/6. The com-
ponents π(A)+ · · ·+π(E) add up to 1+3/4+5/6+1/2+1/6 = 39/12. To normalize, we multiply each
component by 12/39 and we get

π = [12/39,9/39,10/39,6/39,2/39].

We could have proceeded differently and observed that our identity implies that

[π(B),π(C),π(D),π(E)]


1 −1 0 0
0 1 0 0
−1/3 0 1 −1/3
−1/2 −1/2 0 1

= [1/2,0,1/2,0].

Hence,

[π(B),π(C),π(D),π(E)] = [1/2,0,1/2,0]


1 −1 0 0
0 1 0 0
−1/3 0 1 −1/3
−1/2 −1/2 0 1


−1

.

This procedure is a systematic way to solve the balance equations by computer.

Identity (16)

Using the third equation in the second, we find β (B) = 2+β (A). The fourth equation then gives β (D) =
1+(1/3)β (A)+(1/3)(2+β (A)) = 5/3+(2/3)β (A). The first equation then gives β (A) = 1+(1/2)(2+
β (A))+(1/2)[5/3+(2/3)β (A)] = 17/6+(5/6)β (A). Hence, (1/6)β (A) = 17/6, so that β (A) = 17. Con-
sequently, β (B) = 19 and β (D) = 5/3+34/3 = 13. Finally, β (C) = 18.
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Identity (17)

The last two equations give β (H) = 1+(1/2)β (T ). If we substitute this expression in the second equation,
we get β (T ) = 1+(1/2)β (T )+ (1/2)[1+(1/2)β (T )], or β (T ) = 3/2+(3/4)β (T ). Hence, β (T ) = 6.
Consequently, β (H) = 1+(1/2)6 = 4. Finally, β (S) = 1+(1/2)6+(1/2)4 = 6.

Identity (18)

Let us write the equations explicitly:

β (S) = 1+(1/6)[β (1)+β (2)+β (3)+β (4)+β (5)+β (6)]

β (1) = 1+(1/6)[β (1)+β (2)+β (3)+β (4)+β (5)+β (6)]

β (2) = 1+(1/6)[β (1)+β (2)+β (3)+β (4)+β (5)]

β (3) = 1+(1/6)[β (1)+β (2)+β (3)+β (4)+β (6)]

β (4) = 1+(1/6)[β (1)+β (2)+β (3)+β (5)+β (6)]

β (5) = 1+(1/6)[β (1)+β (2)+β (4)+β (5)+β (6)]

β (6) = 1+(1/6)[β (1)+β (3)+β (4)+β (5)+β (6)].

These equations are symmetric in β (2), . . . ,β (6). Let then γ = β (2) = · · · = β (6). Also, β (1) = β (S).
Thus, we can write these equations as

β (S) = 1+(1/6)[β (S)+5γ] = 1+(1/6)β (S)+(5/6)γ

γ = 1+(1/6)[β (S)+4γ] = 1+(1/6)β (S)+(2/3)γ.

The first equation gives
β (S) = 6/5+ γ.

The second yields
γ = 3+(1/2)β (S).

Substituting the next to last identity into the last one gives

γ = 3+(1/2)[6/5+ γ] = 18/5+(1/2)γ.

Hence,
γ = 36/5

and, consequently,
β (S) = 6/5+36/5 = 42/5 = 8.4.

Identity (19)

Let us look for a solution of the form β (i) = a+bλ i. Then

a+bλ
i = 1+(1− p)(a+b)+ p[a+bλ

i+1] = 1+(1− p)(a+b)+ pa+bpλ
i+1.

This identity holds if
a = 1+(1− p)(a+b)+ pa and λ = p−1,
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i.e.,
b =−(1− p)−1 and λ = p−1.

Then,
β (i) = a− (1− p)−1 p−i.

Since β (20) = 0, we need
0 = a− (1− p)−1 p−20,

so that a = (1− p)−1 p−20 and

β (i) = (1− p)−1 p−20− (1− p)−1 p−i =
p−20− p−i

1− p
.

Identity (20)

Let us make a little detour into the solution of such difference equations. Assume you have a function g(n)
such that

g(n) = 1+(1− p)g(n−1)+ pg(n−1)

and two functions β (n) = h(n) and β (n) = k(n) such that

β (n) = (1− p)β (n−1)+ pβ (n+1).

Then, for any two constants a and b, we note that β (n) := g(n)+a.h(n)+b.k(n) satisfies

β (n) = 1+(1− p)β (n−1)+ pβ (n+1).

We can then choose the two constants a and b to make sure that 0 = β (0) = β (M).

To find g(n), we try g(n) = αn. We need

αn = 1+(1− p)α(n−1)+ pα(n+1) = 1+αn− (1− p)α + pα = αn+1−α +2pα.

Thus, we need 1−α +2pα = 0, i.e., α = (1−2p)−1.

To find solutions to β (n) = (1− p)β (n−1)+ pβ (n+1), we try β (n) = λ n. Then,

λ
n = (1− p)λ n−1 + pλ

n+1.

With n = 1, this gives
λ = (1− p)+ pλ

2.

Hence,
pλ

2−λ +(1− p) = 0.

The solutions of this quadratic equation are

λ =
1±
√

1−4p(1− p)
2p

=
1± (1−2p)

2p
= 1 and ρ := (1− p)p−1.

Thus, we find two such solutions that correspond to these two values of λ :

h(n) := 1 and k(n) := ρ
n.
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We now choose the two parameters a and b so that β (n) = g(n)+ah(n)+bk(n) satisfies the two conditions
β (0) = β (M) = 0. This should give us two equations in the two unknowns a and b.

These equations are

0 = β (0) = g(0)+ah(0)+bk(0) = 0+a×1+b×1 = a+b

and
0 = β (M) = g(M)+ah(M)+bk(m) = M(1−2p)−1 +a×1+b×ρ

M.

The first equation gives b =−a, so that the second implies

0 = M(1−2p)−1 +a(1−ρ
M).

Hence,

a =−M(1−2p)−1

1−ρM .

Finally,

β (n) = n(1−2p)−1−M(1−2p)−1

1−ρM (1−ρ
n).

Identity (21)

In the calculation of (20), we found two solutions to (21):

α(n) = 1 and α(n) = ρ
n

with ρ = (1− p)p−1. Hence, for any two constants a and b, a solution is α(n) = a+bρn. We now choose
a and b so that α(0) = 0 and α(M) = 1. That is,

0 = a+b and 1 = a+bρ
M.

Thus, b =−a and
1 = a(1−ρ

M), i.e., a = (1−ρ
M)−1.

Hence,

α(n) = a+bρ
n = a(1−ρ

n) =
1−ρn

1−ρM .

Appendix 2: Some Proofs
Proof Sketch of Theorem 18.3:

A formal proof of Theorem 18.3 is a bit complicated. However, we can sketch the argument to justify the
result.

First let us explain why (12) implies that the invariant distribution is unique. Assume that ν = {ν(i), i∈X }
is an invariant distribution and choose π0 = ν . Then Pr[Xn = i] = ν(i) for all n ≥ 0. Call Yn the fraction
in (12). Note that E[Yn] = ν(i) for all n, because E[1{Xm = i}] = Pr[Xm = i] = ν(i). Now, (12) says
that Yn → π(i). We claim that this implies that E[Yn] → π(i), so that ν(i) → π(i), which implies that
ν(i) = π(i). To prove the claim, we use the fact that Yn → π(i) implies that, for any ε > 0, there is some

CS 70, Summer 2016, Note 18 15



n large enough so that Pr[|Ym−π(i)| ≤ ε] ≥ 1− ε for all m ≥ n. But then, because Ym ∈ [0,1], we see that
E[|Ym−π(i)|]≤ ε(1− ε)+ ε , so that |E[Ym]−π| ≤ E[|Ym−π(i)|]≤ 2ε . This shows that E[Ym]→ π(i).

The second step is to note that all the states must be recurrent, which means that the Markov chain visits
them infinitely often. Indeed, at least one state, say state i, must be recurrent since there are only finitely
many states. Consider any other state j. Every time that the Markov chain visits i, it has a positive probability
p of visiting j before coming back to i. Otherwise, the Markov chain would never visit j when starting from
i, which would contradict its irreducibility. Since the Markov chain visits i infinitely often, it also must visit
j infinitely often, in the same way that if you flip a coin with Pr[H] = p > 0 forever, you must see an infinite
number of Hs.

The third step is to observe that the times T (i,1),T (i,2), . . . between successive visits to one state i are
independent and identically distributed, because the motion of the Markov chain starts afresh whenever
it enters state i. By the law of large number, (T (i,1) + · · ·+ T (i,n))/n→ E[T (i,1)] as n→ ∞. Hence,
n/(T (i,1)+ · · ·+T (i,n))→ π(i) := 1/E[T (i,1)]. That is, the rate of visits of state i is π(i).

The fourth step is to show that π(i)> 0 for all i. Indeed, π(i)> 0 for at least one state i, otherwise the rate
of visits of all the states would be zero, which is not possible since these rates of visit add up to one. Also,
if the Markov chain visits state i with rate π(i)> 0, then it visits state j with at least rate π(i)p > 0 because
it visits j with probability p between two visits to i. Hence, π( j)> 0 for all j.

The fifth step is to show that π(i) satisfies the balance equations. We saw that, during a large number n
of steps, the Markov chain visits state j approximately nπ( j) times. Consider then a given state i. Since
that state is visited with probability P( j, i) after each visit to state j, state i should be visited approximately
nπ( j)P( j, i) times immediately after the nπ( j) visits to state j. If we sum over all the states j, we see that
state i should be visited approximately n∑ j π( j)P( j, i) times over n steps. But we know that this number of
visits is approximately nπ(i). Hence, it must be that n∑ j π( j)P( j, i)≈ nπ(i), i.e., that π(i) = ∑ j π( j)P( j, i).
These are the balance equations.

Proof of Theorem 18.4:

We give the proof in the aperiodic case, i.e., when there is some state i such that d(i) = 1.

Define S(i) = {n > 0 | Pn(i, i)> 0}. We fist show that there is some integer n(i) so that n ∈ S(i) if n≥ n(i).
Note that if g.c.d.(S(i)) = 1, then there must be a,b ∈ S(i) with g.c.d.{a,b} = 1. Using Euclid’s extended
g.c.d. algorithm, we find integers m and n so that ma+ nb = g.c.d{a,b} = 1. Let m+ = max{0,m},n+ =
max{0,n},m−=m+m+,n−= n+n+. Then (m+−m−)a+(n+−n−)b= 1 and we note that k :=m−a+n−b
and k + 1 = m+a+ n+b are both in S(i). Now, if n ≥ k2, then one can write n = ak + b for some b ∈
{0,1, . . . ,k−1} and some a > k−1. But then

n = ak+b = (a−b)k+b(k+1) ∈ S(i),

since both k and k+1 are in S(i). Thus, any n≥ n(i) = k2 is such that n ∈ S(i).

Next we show that d( j) = 1 for every state j. Since it is irreducible, the Markov chain can go from j to i is
some a steps and from i to j in some b steps. But the Markov chain can go from i to i in n(i) or in n(i)+1
steps. Consequently, the Markov chain can go from j to j in a+n(i)+b steps and also in a+n(i)+1+b
steps by going from j to i in a steps, then from i to i in n(i) or n(i)+ 1 steps, then from i to j in b steps.
Hence, {n > 0 | Pn( j, j)> 0} contains two consecutive integers a+n(i)+b and a+n(i)+1+b, so that its
g.c.d. must be equal to one. Thus, d( j) = 1 for every state j.

Let us now fix a state i arbitrarily. The claim is that there is some integer k such that the Markov chain can
go from any state j to state i in k steps. To see this, using the irreducibility of the Markov chain, we know
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that for every j there is some integer n( j, i) so that the Markov chain can go from j to i in n( j, i) steps. But
then, the Markov chain can go from j to i in n+n( j, i) steps for any n≥ n( j). Indeed, the Markov chain can
go first from j to j in n steps, then from j to i in n( j, i) steps. Thus, the Markov chain can go from j to i in
n steps, for any n≥ n( j)+n( j, i). We then let k = max j{n( j)+n( j, i)}.
Next, consider two independent copies Xn and Zn of the Markov chain with transition matrix P. Markov
chain Xn starts with the invariant distribution π . Markov chain Zn starts with an arbitrary initial distribution
π0. Define state i and the integer k as in the previous paragraph. There is some positive probability p that
the two Markov chains both are in state i after k steps. If not, there is again a probability p that they are both
in state i after k more steps, and so on. Thus, if we designate by τ the first time that the two Markov chains
meet, i.e., τ = min{n ≥ 0 | Xn = Zn}, we see that Pr[τ > km] ≤ (1− p)m for m = 1,2, . . .. Now, define the
Markov chain Yn so that Yn = Zn for n < τ and Yn = Xn for n≥ τ . In words, the Markov chain starts like Zn,
but it sticks to Xn once Xn = Zn. This Markov chain Yn still has transition matrix P and its initial distribution
is π0. Note that Pr[Xn 6= Yn] = Pr[τ > n]→ 0 as n→ ∞. Hence,

|Pr[Xn = i]−Pr[Yn = i]| ≤ Pr[Xn 6= Yn]→ 0, as n→ ∞.

But Pr[Xn = i] = π(i) for all n since Xn starts with the invariant distribution π . We conclude that Pr[Yn =
i]→ π(i) as n→ ∞.
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