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Chernoff Bounds
This note introduces what are commonly called Chernoff bounds. Chernoff bounds are extremely powerful,
giving exponentially decreasing bounds on the tail distribution. These bounds are derived by using Markov’s
inequality.

Often, our goal is to understand how collections of a large number of independent random variables behave.
This is what the laws of large numbers reveal. In general, the idea is that the average of a large number of
i.i.d. random variables will approach the expectation. Sometimes that is enough, but usually, we also need
to understand how fast does the average converge to the expectation.

So far, our main tools have been the Markov and Chebyshev inequalities:

• Markov: If X is a non-negative random variable, then

Pr[X ≥ a]≤ E[X ]

a

• Chebyshev: If Xi are i.i.d. then

Pr

[∣∣∣∣∣1n n

∑
i=1

Xi−E[X1]

∣∣∣∣∣≥ ε

]
≤ Var[X1]

nε2

Our goal is to better bound the quantity Pr[X ≥ a], when X is the sum of i.i.d random variables Xi. We
will use Markov’s inequality, but this time, we will apply it not to the random variable X , but to etX , for an
appropriate choice of t. Since X is the sum of i.i.d. random variables, i.e. X = ∑i Xi, etX will be the product
of etXi . The product of small numbers decreases exponentially!

Let’s see this formally:

Theorem 17.1. Chernoff bounds Let X1, . . . ,Xn be independent indicator random variables such that Pr[Xi =
1] = pi, and Pr[Xi = 0] = 1− pi. Let X = ∑

n
i=1 Xi and µ = E[X ]. Then the following Chernoff bound holds:

For any δ > 0:

Pr[X ≥ (1+δ )µ]≤

(
eδ

(1+δ )(1+δ )

)µ

Proof. Let’s first apply Markov’s inequality on X :

Pr[X ≥ (1+δ )µ] = Pr[etX ≥ et(1+δ )µ ]≤ E[etX ]

et(1+δ )µ
(1)

The crux of the proof is analyzing E[etX ]. Let’s first analyze E[etXi ]. etXi is a random variable that takes
value et·1 with probability pi, and et·0 = 1 with probability 1− pi. Therefore,

E[etXi ] = piet +(1− pi) ·1 = 1+ pi(et −1)≤ epi(et−1),
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where in the last inequality we used that for all y, 1+ y≤ ey.

Now, for E[etX ] we have:

E[etX ] = E
[
et ∑

n
i=1 Xi

]
= E

[
n

∏
i=1

etXi

]

=
n

∏
i=1

E
[
etXi
]
≤

n

∏
i=1

epi(et−1)

= e∑i pi(et−1) = e(e
t−1)∑i pi = e(e

t−1)µ

Plugging back in to equation 1 we have:

Pr[X ≥ (1+δ )µ] = Pr[etX ≥ et(1+δ )µ ]

≤ E[etX ]

et(1+δ )µ

≤ e(e
t−1)µ

et(1+δ )µ
=

(
e(e

t−1)

et(1+δ )

)µ

Since δ > 0, we can set t = ln(1+δ ). Plugging in we get:

Pr[X ≥ (1+δ )µ]≤

(
eδ

(1+δ )(1+δ )

)µ

Using very similar proofs we can show the following variations:

• For any δ > 0 :

Pr[X ≥ (1+δ )µ]≤

(
eδ

(1+δ )(1+δ )

)µ

• For any 1 > δ > 0 :

Pr[X ≤ (1−δ )µ]≤

(
eδ

(1−δ )(1−δ )

)µ

• For any 1 > δ > 0:

Pr[X ≥ (1+δ )µ]≤ e−
µδ2

3 (2)

• For any 1 > δ > 0:

Pr[X ≤ (1−δ )µ]≤ e−
µδ2

2 (3)

• For R > 6µ:
Pr[X ≥ R]≤ 2−R

CS 70, Summer 2016, Lecture 17 2



Estimating a parameter
Example taken from Mitzenmacher and Upfal’s "Probability and Computing"

Suppose that we are interested in evaluating the probability that a particular gene mutation occurs in the
population. Given a DNA sample, a lab test can determine if it carries the mutation. However, the test is
expensive and we would like to obtain a relatively reliable estimate from a small number of samples.

Let p be the unknown value that we are trying to estimate. Assume that we have n samples and that X = p̃n
of these samples have the mutation. Given a sufficiently large number of samples, we expect the value p to
be close to the sampled value p̃. We express this intuition using the concept of a confidence interval.

Definition 17.1. A 1− γ confidence interval for a parameter p is an interval [p̃−δ , p̃+δ ] such that

Pr (p ∈ [p̃−δ , p̃+δ ])≥ 1− γ.

Notice that, instead of predicting a single value for the parameter, we give an interval that is likely to contain
the parameter. If p can take on any real value, it may not make sense to try to pin down its exact value from
a finite sample, but it does make sense to estimate it within some small range.

Naturally we want both the interval size 2δ and the error probability γ to be as small as possible. We derive
a trade-off between these two parameters and the number of samples n. In particular, given that among n
samples (chosen uniformly at random from the entire population) we find the mutation in exactly X = p̃n
samples, we need to find values of δ and γ for which

Pr (p ∈ [p̃−δ , p̃+δ ]) = Pr (np ∈ [n(p̃−δ ),n(p̃+δ )])≥ 1− γ

Now X = p̃n has a binomial distribution with parameters n and p, so E[X ] = np. If p /∈ [p̃−δ , p̃+δ ] then
we have one of the following two events:

1. if p < p̃−δ , then X = np̃ > np+nδ = E[X ]
(

1+ δ

p

)
;

2. if p > p̃+δ , then X = np̃ < np−nδ = E[X ]
(

1− δ

p

)
;

We can apply Chernoff bounds 2 and 3 and compute:

Pr (p /∈ [p̃−δ , p̃+δ ]) = Pr
(

X > np
(

1+
δ

p

))
+Pr

(
X < np

(
1− δ

p

))
≤ e−

np( δ
p )

2

3 + e−
np( δ

p )
2

2

= e−
nδ2
3p + e−

nδ2
2p

This bound is not really useful, since p is unknown. A simple solution it to use the fact that p ≤ 1, and
observe that the bound gets worse for larger p. Plugging in p = 1 we get:

Pr (p /∈ [p̃−δ , p̃+δ ])≤ e−
nδ2

3 + e−
nδ2

2

Setting γ = e−
nδ2

3 + e−
nδ2

2 we get a tradeoff between the error probability γ , the number of samples n and δ

(half the length of the confidence interval).

CS 70, Summer 2016, Lecture 17 3



Example 1
Let’s put the example above in numbers. Say we’re interested in estimating a parameter p with 5% accuracy
with probability at least 95%. Therefore, δ = 0.025, and γ = 0.05. The number of samples necessary
satisfies:

e−
nδ2

3 + e−
nδ2

2 ≤ γ

e−
n0.0252

3 + e−
n0.0252

2 ≤ 0.05

n≥ 15270

This means that if we want to run an opinion poll, where the answers are either yes or no, asking 16000
people is more than enough to get us within a 5% of the true answer, with probability at least 95%. Notice
that this is independent of how big the population is! The only issue is making sure that the samples/random
variables are independent.

Example 2
Let’s fix a confidence interval size, say 1%, and see how the probability of being within the interval de-
creases, as n increases. The function we are interested is

f (n) = e−
nδ2

3 + e−
nδ2

2 = e−
n0.0052

3 + e−
n0.0052

2

Here is a plot of this function, for n from 100,000 to 500,000:

For 100,000 samples, our bound on the probability that we’re in the interval is around 0.72. For 500,000
samples, it drops to 0.017. For a million samples it drops to 0.00024.
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