CS 70 Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye Discussion 1C

1. Fun with Binary.

Prove the following statement:

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$

2. Power Inequality

Use induction to prove that for all integers $n \ge 1$, $2^n + 3^n \le 5^n$.

3. Triangle Inequality

Recall the triangle inequality, which states that for real numbers x_1 and x_2 ,

$$|x_1 + x_2| \le |x_1| + |x_2|.$$

Use induction to prove the generalized triangle inequality:

 $|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|.$

4. False Proof

What goes wrong in the following "proof"?

Theorem: If *n* is an even number and $n \ge 2$, then *n* is a power of two.

Proof:

By induction on the natural number *n*. Let the induction hypothesis IH(k) be the assertion that "if *k* is an even number and $k \ge 2$, then $k = 2^i$, where *i* is a natural number".

Base case: IH(2) states that 2 is a power of two, which it is $(2 = 2^1)$.

Inductive step: Assume that *k* is a number greater than 2, and that IH(j) holds for all $2 \le j < k$.

Case 1: *k* is odd, and there is nothing to show.

Case 2: k is even, so $k \ge 4$. Since $k \ge 4$ is an even number, k = 2l, with $2 \le l < k$. Therefore we can use the induction hypothesis IH(l), which asserts that $l = 2^i$ for some integer *i*. Thus we have $k = 2l = 2^{i+1}$, so k is a power of two. IH(k) holds.